Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary material

Boltzmann-type cryogenic ratiometric thermometry based on Nd³⁺-doped LuVO₄ phosphors

Alexey A. Kalinichev¹, Elena V. Afanaseva², Evgenii Yu. Kolesnikov², Ilya E. Kolesnikov^{1,*}

¹ St. Petersburg University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia

² Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia

Figure S1. a) Emission spectra of LuVO₄:Nd³⁺ 1 at.% sample (P1) at different temperatures (λ_{ex} = 878 nm), b) temperature dependence of the peak emission intensities of ${}^{4}F_{3/2}(2) - {}^{4}I_{11/2}(1)$ and ${}^{4}F_{3/2}(1) - {}^{4}I_{11/2}(1)$ transitions.

Figure S2. Deconvolution of emission spectra ($\lambda_{ex} = 878 \text{ nm}$) of LuVO₄:Nd³⁺ 1 at.% sample (P1) at different temperatures: a) 25 K; b) 125 K; c) 250 K.

Figure S3. a) Emission spectra of LuVO₄:Nd³⁺ 1 at.% sample (C1) at different temperatures (λ_{ex} = 878 nm), b) temperature dependence of the peak emission intensities of ${}^{4}F_{3/2}(2) - {}^{4}I_{11/2}(1)$ and ${}^{4}F_{3/2}(1) - {}^{4}I_{11/2}(1)$ transitions.

Figure S4. a) Emission spectra of LuVO₄:Nd³⁺ 0.01 at.% sample (C0.01) at different temperatures ($\lambda_{ex} = 878 \text{ nm}$), b) temperature dependence of the peak emission intensities of ${}^{4}F_{3/2}(2) - {}^{4}I_{11/2}(1)$ and ${}^{4}F_{3/2}(1) - {}^{4}I_{11/2}(1)$ transitions.

Figure S5. Deconvolution of emission spectra ($\lambda_{ex} = 878 \text{ nm}$) of LuVO₄:Nd³⁺ 1 at.% sample (C1) at different temperatures: a) 25 K; b) 125 K; c) 250 K.

Figure S6. Temperature dependence of the peak emission intensities of ${}^{4}I_{9/2}(1) - {}^{4}F_{3/2}(1)$ and ${}^{4}I_{9/2}(2) - {}^{4}F_{3/2}(1)$ transitions.