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1. Distortion degree calculation

According to the refined structural data, there were one type of MoO6 octahedron 

and two types of PO4 tetrahedron in the KCMP crystal. Based on the bond length and 

bond angle of polyhedron at different temperature, the distortion degree Δd can be 

calculated using the following formula proposed by P. S. Halasyamani:1
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where M-O represents the bond length of polyhedron, and θ is the angle between bonds.

2. Dipole moment calculation

The direction of the polyhedral distortion can be analyzed by dipole moment, 

which was calculated using the bond-valence theory.2-6 Based on the bond length dij and 

occupied position of the MoO6 octahedron for the KCMP crystal, the dipole moment 

can be calculated by the following formulas:
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where r0 and b are valued as 1.907 and 0.37 for MoO6 octahedron, respectively. Center 

of charge (Ccharge) and center of gravity (Cgrav) are determined by formula (S4-S6). a 

and b are the distance from the center of charge or gravity, R is the bond length, i and j 

are the atomic number. n is the number of electrons and e is the charge per electron 

(4.8×10-10 esu). The calculated results are shown in Tables S4-S5.

3. The first principle calculation 



The calculations in this work were performed by adopting the Vienna ab initio 

Simulation Package (VASP) based on density functional theory (DFT) combined with 

projector augmented wave (PAW) pseudopotentials to describe the core electrons.7 The 

Mo p65s24d1, Cs 5s25p66s1, K 3s23p64s1, P 2s22p3, and O 2s22p4 states were treated as 

the valence electrons. Structural configurations at different temperatures used for 

calculation were obtained from Rietveld refinement of the measured XRD patterns. 

Configuration optimization was performed using electron exchange and correlation 

within the generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof 

(PBE) functional with an energy cutoff of 500 eV.8 And for structural relaxation, the 

energy and force convergence criteria were 1 × 10−5 eV and 0.01 eV/Å, respectively, 

and the Monkhorst-Pack K-point mesh was fixed as 9 ×9 × 2 in the Brillouin zone for 

the structure. During the calculation of electronic properties, the above parameters and 

convergence conditions remain unchanged.
4. Maker Fringe Theory

The Maker fringe method was generally used to measure the nonlinear optical 

(NLO) coefficients, the power of second harmonic generation (SHG) could be 

expressed as:9
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In equation (S8), c is the velocity of light in vacuum, A is the sectional area of 

fundamental light, d is the NLO coefficient, Pω is the fundamental light power, f(θ) is 

a function of incident angle θ, while θω and θ2ω denotes the corresponding refractive 

angles for the fundamental and SHG lights in the crystal, sin2Ψ is the origin of the 

Maker fringes.

In equation (S9), nω and n2ω are the refractive indices under the fundamental and 



harmonic wavelengths, respectively. tω and T2ω are the transmission coefficients of 

fundamental wave and harmonic wave, respectively. p(θ), R(θ) and β(θ) are the 

projection factor, incident multiple-reflection correction and light beam size correction, 

respectively.

In equation (S10), l and λω are the thickness of the tested crystal sample and 

wavelength of the fundamental light, respectively.

In order to fit the measured Maker fringes and obtain the NLO coefficients, a 

constant C was introduced as:10
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where the power and the sectional area of the fundamental light were fixed. Herein, the 

magnitude of NLO coefficients of KCMP crystal could be determined relatively to d36 

of KDP crystal according to the relationship between C and d in Equation (S11). Hence, 

the final coefficient equation can be expressed as:10
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5. Additional Periodic Phase Theory

During the typical collinear frequency doubling process, the electric field E2ω(z) 

of the SHG light is expressed as:11
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where Eω(z) denotes the electric field of the fundamental field at the propagation length 

z. ω refers to the fundamental frequency. c represents the light velocity. n2ω(z) and deff 

(z) denote the refractive indexes of the SHG light and effective nonlinear coefficient at 

the propagation length z. is the phase difference between the 2 12k z k z kz    

fundamental and SHG lights with the wavevectors k1 and k2, respectively. For the 

birefringence phase matching, . when , the energy will transfer from =0kz     

the fundamental light to the SHG, when , the energy will transfer from the SHG   

to the fundamental light. Therefore, the SHG output will oscillate with a phase 



difference period of 2π.

The additional periodic phase (APP) technology can be expressed as follows: 

when the phase difference reaches π, the SHG process will be blocked, and an APPPD

with the value of π or -π will be added; after adding the APP, the phase difference APP

in a certain period will be or 0, here m is an integer. The APP 2T PD APP m        

can be achieved by periodically processing, which undermines the translational 

symmetry of the nonlinear crystals. In the unbroken regions, the frequency conversion 

can reach its maximum when . There exists no continuous SHG effects in the PD  

processing regions, whereas the dispersion of the refractive indices exists with 

wavevectors k1 and k2, thereby generating an APP . When the fundamental and APP

SHG lights propagate for a certain period, the phase difference between the 

fundamental and SHG lights should be , which can reach 0 or 2mπ to avoid PD APP   

the transferring of energy from the SHG light to the fundamental light. The period Λ 

can be calculated based on the following equations:

Λ=La+Lb (S14)

(S15) 2 12 2k k     

Where La denotes the length of the periodic regions for the effective nonlinear 

interaction between the fundamental and SHG lights. Lb denotes the length of periodic 

regions where phase-difference is added and the conversion is blocked from the SHG 

to the fundamental light. The APP period length as a function of SHG wavelength for 

d33-type KCMP crystal can be obtained and shown in Fig. S4. It shows that 515 nm 

SHG wavelength corresponds to the APP period of 20.6 μm.



Fig. S1 (a) XPS spectra of the KCMP crystal; high-resolution energy spectra of (b) K 

2p, (c) Cs 3d, (d) Mo 3d, (e) P 2p, and (f) O 1s.



Fig. S2 The impedance spectroscopy at different temperature.

Fig. S3 The variation of average effective charge on oxygen with temperature for 

KCMP crystal.



Fig. S4 The APP period length as a function of SHG wavelength for d33-type KCMP 

crystal.

Table S1 XPS analysis of elements K 2p, Cs 3d, Mo 3d, P 2p and O 1s in KCMP 

crystal.

Elements
BE 

(eV)

FWHM 

(eV)

Area 

Percent (%)

Valenc

e

2p1/2 295.07 1.81
K

2p3/2 292.34 1.54
8.32 +1

3d3/2 737.67 1.73
Cs

3d5/2 723.76 1.70
9.37 +1

3d3/2 236.29 1.67

3d5/2 233.14 1.41
+6

3d3/2 234.18 1.33 +5
Mo

3d5/2 232.01 1.5

6.37

+4

P 2p 133.67 1.99 16.67 +5

O 1s 532.35 1.69 59.28 -2



530.74 1.76

Table S2 The refractive indices of the KCMP crystal measured at five different 

wavelengths.

Wavelength (μm) no ne Δn

0.406 1.6755 1.6663 0.0092

0.514 1.6515 1.6427 0.0088

0.636 1.6390 1.6307 0.0083

0.965 1.6259 1.6188 0.0071

1.547 1.6176 1.6105 0.0071

Table S3 Sellmeier coefficients derived from the measured refractive indices.

Sellmeier 

coefficient

s

A B C D

no 2.62167 0.02522 0.02985 0.00659

ne 2.60362 0.02149 0.04151 0.00794

Table S4 Calculation results for the valence bonds of the MoO6 octahedron.

dij vij

Mo-O1 1.6886 1.8045

Mo-O2 1.6982 1.7583

Mo-O3 2.1708 0.4902

Mo-O4 1.9916 0.7956

Mo-O5 2.1597 0.5051

Mo-O6 1.9912 0.7965

∑Vij 6.15

Table S5 Calculation results for the dipole moment of the MoO6 octahedron.

x(a) y(b) z(c) Debye

MoO6 -0.3248 -0.6335 -1.5152 1.6115
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