Electronic supplementary information for High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: Role of multi-valley bands and high anharmonicity

T. Pandey,¹ F. M. Peeters,^{1,2} and M. V. Milošević^{1,3}

¹Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium ²Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Fortaleza 60455-760, Brazil ³NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium (Dated: July 25, 2023)

FIG. S1. Convergence of phonon dispersion with respect to the supercell size. Phonon frequencies are well converged on a $2 \times 2 \times 1$ supercell.

FIG. S2. Convergence of the room-temperature lattice thermal conductivity with respect to (a) nearest-neighbor cutoff used in 3rd order inter-atomic force constants, and (b) integration grid. Lattice thermal conductivity is well converged at interaction cutoff >5, and integration grid of $13 \times 13 \times 5$.

FIG. S3. Comparison of Mg₃Si₂Te₆ band structure calculated without (PBE) and with spin-orbit coupling (PBE+SOC).

FIG. S4. Calculated participation ratio (PR) along the high symmetry path, in (a) $Mg_3Si_2Te_6$ and (b) Si_2Te_3 . (c) Comparison of PR in both compounds in the entire Brillouin zone. Lower PR value in $Mg_3Si_2Te_6$ indicates that phonon modes in this compound are more localized. The most of localization is provided by Mg atoms.

FIG. S5. Cumulative lattice thermal conductivity of Mg₃Si₂Te₆ as a function of the mean free path at 300 K, 600 K, and 900 K. For mean free path in the range 10-20 nm, κ_l can be reduced by ~50 %.

TABLE S1. Mg₃Si₂Te₆ parameters used for the electronic transport property calculations within AMSET code. C is the elastic tensor in Voigt notation. ϵ_s and ϵ_{∞} are the static and high-frequency dielectric constants, respectively. ω_{PO} is the effective polar phonon frequency.

\mathbf{C} (in GPa) =	$\begin{bmatrix} 68.14 \\ 19.39 \\ 11.57 \\ 0 \\ -2.0 \\ 0 \end{bmatrix}$	$19.39 \\ 68.14 \\ 11.57 \\ 0 \\ 2.0 \\ 0 \\ 0$	$11.57 \\ 11.57 \\ 39.20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 13.58 \\ 0 \\ 2.0 \end{array}$	-2.0 2.0 0 13.58 0	$\begin{array}{c} 0 \\ 0 \\ 01 \\ 2.0 \\ 0 \\ 24.33 \end{array}$	
$oldsymbol{\epsilon}_{ ext{s}} ext{ (in } \epsilon_0) =$	$\begin{bmatrix} 15.45 & 0 & 0 \\ 0 & 15.45 & 0 \\ 0 & 0 & 12.37 \end{bmatrix}$						
$oldsymbol{\epsilon}_{\infty} \ (ext{in} \ \epsilon_0) =$		[g	$\begin{array}{ccc} 0.95 & (0 \\ 0 & 9.9 \\ 0 & (0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 95 & 0 \\ 0 & 7.2 \end{array}$	6]		
$\omega_{PO}({ m in~THz}) =$			5.3	85			

FIG. S6. (color online) Potential energy profiles of $Mg_3Si_2Te_6$ during the AIMD simulation at (a) 600 K and (b) 1000 K, respectively. The corresponding 600 and 1000 K snapshots of atomic configurations at 7 and 14 ps are also shown in (c) and (d), respectively.