Synthesis, Optical and Redox Attributes of Core-/Bay-Substituted Thionated NDIs, PDIs and their Diverse Radical Anions

Kalyanashis Mandal, ${ }^{[a, b]}$ Devendra Yadav, ${ }^{[a]}$ Poonam Saini and Pritam Mukhopadhyay* ${ }^{\text {ª] }}$
${ }^{[a]}$ School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
${ }^{[b]}$ Dept. of Chemistry, Brainware University, Barasat, Kolkata 700125, India

Supporting Information

Contents

1. Experimental Section S2
2. Single Crystal X-ray Diffraction Studies S6
3. UV-Vis-NIR Studies S7
4. Theoretical Studies S8
5. Spin Density and EPR studies S10
6. NMR studies S11
7. Mass Spectrometry S23
8. IR Spectroscopy S288
9. Table for SCXRD S30
10. Table for Redox potentials S31
11. Reference S31

General

Chemicals were sourced either from Fluka, Sigma-Aldrich, Spectrochem India or Thomas-Baker-India and were used as received. Thin layer chromatography (TLC) was carried out on aluminium plates coated with silica gel mixed with fluorescent indicator having particle size of $25 \mu \mathrm{~m}$ and was sourced from Sigma-Aldrich. NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, ~ D E P T-135$ and APT) spectra were recorded on a Bruker 500 MHz spectrometer in CDCl_{3} with TMS as a standard. The elemental analysis was performed using a Perkin-Elmer 2400 CHN elemental analyser. MALDI-TOF mass spectral data were obtained using a Bruker Autoflex TOF/TOF instrument with laser repetition rate of 50 ps. α-Cyano-4-hydroxycinnamic acid and

1,8,9-Anthracenetriol were used as the matrix for MALDI-TOF mass spectrometry. IR spectra were recorded using a Varian 7000 FT-IR instrument.

DFT calculations were performed at B3LYP/6-311++G(d,p)/CPCM in DCM to optimize the molecular geometries of all the molecules in Gaussian 09 program package. To reduce computational time, axial groups have changed by methyl group. The HOMO, LUMO, ESP and spin densities were calculated by using the optimized geometries.

UV-Vis-NIR and FT-IR Spectroscopy: UV-Vis-NIR spectra were recorded on a JASCO V-670 Spectrophotometer having path length of 10 mm were used. Wavelength reported in nanometer (nm). UV-Grade solvents were used for the spectroscopic experiments. Fourier transform infrared (FT-IR) spectra were recorded on a Varian 7000 FT-IR spectrometer. Samples were analyzed in powder form. A background scan of air was collected prior to analysis while FT-IR in neat were taken using Bruker Tensor 37 FT-IR Spectrometer.

CV and DPV: CV and DPV were carried out using a computer controlled potentiostat (CHI 650C) and a standard three electrode arrangement that consisted of Pt as working and auxiliary electrodes and SCE as reference electrode. All the electrochemical measurements were carried out in $\mathrm{Ar}-$ purged solvents containing $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as the supporting electrolyte. The scan rate for CV experiments was typically $200-300 \mathrm{mV} / \mathrm{s}$. DPV was carried out keeping peak amplitude 50 mV , peak width 0.01 s , pulse period 0.05 s and increment E at 20 mV .

Experimental Section

Molecule 1: Yield $=9 \% . \mathrm{R}_{\mathrm{f}}=0.70 \mathrm{CHCl}_{3} / \mathrm{n}$-hexane (3:7), Melting Point: $210^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.95$ (s, 2H, $A r-H$), 8.84 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H$), 8.63 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 6.98], J=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Mes} B z-H), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Mes}-p C H_{3}\right), 1.98$ (s, 12 H, Mes-oCH3), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=192.56,188.01,187.98,160.46$, $140.63,138.91,138.71,136.64,136.02,135.40,135.33,134.28,133.67,131.41,131.24$, $130.64,129.72,129.68,128.51,126.32,125.50,122.65,29.73,21.37,21.33,17.67,17.64$. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated: Exact Mass: 550.120, Found: $550.076(\mathrm{~m} / \mathrm{z})$. FT-IR (cm^{-1}): 2919, 1738, 1680, 1439, 1206. Anal.Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}_{3}$: C, 69.78; H, 4.76; N, 5.09; Found: C, $68.91 ; \mathrm{H}, 4.36 ; \mathrm{N}, 4.92$.

Molecule 2: Yield $=15 \% . \mathrm{R}_{\mathrm{f}}=0.65 \mathrm{CHCl}_{3} / \mathrm{n}$-hexane (1:1), Melting Point: $255{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.08$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H$), 8.67 (d, $J=8.0 \mathrm{~Hz}$, 2H, $A r-H$), 6.99 (s, 4H, Mes $B z-H$), 2.31 (s, 6H, Mes-pCH3), 1.98 (s, 12H, Mes-oCH3), ${ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=192.37,160.08,138.94,135.83,135.32,134.26$, 131.21, 129.92, 129.68, 126.20, 126.01, 31.95, 29.72, 29.39, 22.72, 21.32, 17.64, 14.16. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 534.143, Found $534.207(\mathrm{~m} / \mathrm{z})$. FT-IR $\left(\mathrm{cm}^{-1}\right)$: 2911, 1738, 1688, 1439, 1214. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, 71.88; H, 4.90; N, 5.24; Found: C, 71.61; H, 4.82; N, 5.42.

Molecule 3: Yield $=8 \%$. $\mathrm{R}_{\mathrm{f}}=0.45$ (7:3) , Melting Point: $285{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.09$ (d, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H\right), 8.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 8.69(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, A r-H$), 6.99 (s, 4H, MesBz-H), 2.31 (s, 6H, Mes-pCH3), 2.0 (s, 12H, Mes$o \mathrm{CH}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=192.17,170.53,170.41,162.60,162.56$, $162.30,159.74,139.14,138.97,135.77,135.27,134.96,134.27,131.73,131.52,131.49$, $131.08,130.41,130.35,129.70,129.60,127.83,127.62,127.18,126.95,126.61,125.98$, $125.73,21.33,21.25,21.18,21.06,17.80,17.65,14.17$. MS (MALDI-TOF, matrix- $\alpha-$ cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 518.166, found $518.080(\mathrm{~m} / \mathrm{z})$. FT-IR (cm^{-1}): 2919, 1730, 1683, 1439, 1339, 1223. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 74.11$; H, 5.05; N, 5.40; Found: C, 73.91; H, 4.92; N, 5.46.

Molecule 4 [Reference 1]: Yield: $20 \%, \mathrm{R}_{\mathrm{f}}=0.56\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=9.34(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Mes} B z-$ H), 2.31 (s, 6 H, Mes- $p C H_{3}$), 1.99 (s, 12 H , Mes-oCH $)_{3}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K): $\delta=189.30,158.08,143.68,139.15,135.38,134.06,129.77,128.33,128.27,127.17$, 123.54, 21.29, 17.72, 17.67. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 689.964, found 689.959 (m/z). FT-IR $\left(\mathrm{cm}^{-1}\right): 2911,1688$, 1414, 1331, 1214. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 55.50; H, 3.49; Br, 23.08; N, 4.05; Found: C, 55.10; H, 3.59; N, 4.25.

Molecule 5: Yield $=15 \% . \mathrm{R}_{\mathrm{f}}=0.35\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.34$ (s, 1H, $A r-H$), 9.01 (s, 1H, $A r-H$), 6.99 (s, 4H, MesBz-H), 2.30 (s, 6H, Mes-pCH), 1.99 (s, 12H, Mes-oCH); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 300 K): $\delta=189.12,170.49,170.37,160.50,160.42,157.75,143.69,139.44,139.31$, $139.14,135.35,134.81,134.07,130.27,129.76,129.65,129.03,128.82,128.53,128.35$, $126.94,125.49,124.76,123.23,114.07,39.24,37.11,34.41,33.83,31.94,31.45,30.21$, 30.05, 29.71, 29.67, 29.52, 29.37, 29.17, 28.97, 22.70, 21.26, 21.02. TOF-MS-ES: calculated Exact Mass (M+H): 674.995, found $674.990(\mathrm{~m} / \mathrm{z})$. FT-IR $\left(\mathrm{cm}^{-1}\right): 2919,1721$,

1671, 1356, 1223. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.82 ; \mathrm{H}, 3.58 ; \mathrm{Br}, 23.63 ; \mathrm{N}, 4.14$. Found: C, 56.41; H, 3.59; N, 4.24.

Molecule 6: Yield $=11 \% . \mathrm{R}_{\mathrm{f}}=0.30\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 9:1), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.96$ (s, 1H, $\left.A r-H\right), 8.73$ (s, 1H, $\left.A r-H\right), 4.20(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 1.75-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.25(\mathrm{~m}$, 8 H), 0.91 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=201.98,160.82,160.25,147.22$, $135.35,133.27,128.28,127.18,126.64,126.29,116.19,114.47,41.88,41.62,41.56,31.42$, 27.87, 26.73, 26.66, 22.54, 22.51, 14.00. MS (MALDI-TOF, matrix- α-cyano-4hydroxycinnamic acid): Calculated Exact Mass: 516.165, Found 516.075 (m/z). FT-IR $\left(\mathrm{cm}^{-1}\right): 2927,2853,1713,1646,1455,1322,1255$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 65.09$; H, 5.46; N, 10.84; O, 6.19; Found: C, 69.62; H, 4.26; N, 9.76.

Molecule 7: Yield $=24 \% . \mathrm{R}_{\mathrm{f}}=0.48\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.82(\mathrm{~s}, 2 \mathrm{H}, A r-H), 7.42(\mathrm{~d}, J=7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph} H)$, $7.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ph} H), 7.12(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ph} H), 6.97(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Mes} B z-H), 2.32\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{Mes}-p \mathrm{CH}_{3}\right), 2.03$ ($\mathrm{t}, 12 \mathrm{H}$, Mes-oCH $)_{3}$, ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=190.51,158.37,157.64$, $138.59,135.58,134.14,131.34,130.30,129.57,129.52,124.97,124.76,119.14,114.03$, 21.19, 17.65. TOF-MS-ES: Calculated Exact Mass for (M+H): 719.204, found 719.151. FT-IR (cm^{-1}): 2919, 1688, 1480, 1372, 1223. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 73.51; H, 4.77; N, 3.90; Found: C, 73.41; H, 4.97; N, 3.92.

Molecule 8: Yield $=11 \% . \mathrm{R}_{\mathrm{f}}=0.55\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 7:3), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.48$ (s, 2H, $A r-H$), 7.59 (d, $4 \mathrm{H}, \mathrm{Ph} H$), 7.48-7.01 (6 H , $\mathrm{Ph} H$), 6.96 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Mes} B z-H$), 2.32 (t, $6 \mathrm{H}, \mathrm{Mes}-p C H_{3}$), 2.04 (t, $\left.12 \mathrm{H}, \mathrm{Mes}-o C H_{3}\right),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=190.95,150.03,138.68,136.26,136.02,134.92,134.19$, $130.46,130.34,129.68,129.55,127.65,124.92,42.27,29.70,26.76,21.22,17.72,17.67$, 17.53. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated Exact Mass (M+H): 750.150, Found $750.123(\mathrm{~m} / \mathrm{z})$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}: \mathrm{C}, 70.37$; H, 4.56; N, 3.73; Found: C, 70.23; H, 4.76; N, 3.91.

Molecule 9: Yield $=9 \% . \mathrm{R}_{\mathrm{f}}=0.60\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 7:3), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.23$ (s, 2H, $A r-H$), $7.68(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph} H), 7.43-7.35(6 \mathrm{H}$, $\mathrm{Ph} H$), $6.94(\mathrm{t}, 4 \mathrm{H}, \mathrm{Mes} B z-H), 2.28$ (t, 6H, Mes-pCH3), 1.94 ($\mathrm{t}, 12 \mathrm{H}$, Mes-oCH3), MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated Exact Mass:
846.039, Found $846.038(\mathrm{~m} / \mathrm{z})$. FT-IR (cm^{-1}): 2927, 2853, 1663, 1455, 1239. Anal.Calcd for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Se}_{2}$: C, 62.56; H, 4.06; N, 3.32; Found: C, 62.56; H, 4.06; N, 3.32.

Molecule Br_{2} PDICy: Yield $=40 \% . \mathrm{R}_{\mathrm{f}}=0.65\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 7:3), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.38$ (s, 2H, $\left.A r-H\right), 8.79(\mathrm{~s}, 2 \mathrm{H}, A r-H)$, 8.58 (d, 2H, $J=8 \mathrm{~Hz}, A r-H), 4.97-4.91$ (m, 2H), 2.50-2.42 (m, 4H), 1.86-1.26 (16H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=163.32,162.77,137.95,132.82,132.67,129.96$, $129.25,128.45,127.04,123.73,123.33,120.70,54.28,29.11,26.51,25.39$. FT-IR $\left(\mathrm{cm}^{-1}\right)$: 2919, 2844, 1738, 1646, 1572, 1389, 1231. Anal.Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 60.69; H , 3.96; N, 3.93; Found: C, 60.33; H, 4.12; N, 4.03.

Molecule 10: Yield $=15 \% . \mathrm{R}_{\mathrm{f}}=0.58\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.31(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, A r-H), 8.99(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, A r-H), 8.79$ (s, 2H, $A r-H$), 5.92 (s, 2H), 2.53 (d, 4H), 1.86-1.30 (16 H), ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=194.40,159.95,138.95,135.85,132.69,132.03,129.06,128.39$, 127.94, 125.06, 124.12, 120.83, 62.73, 28.66, 26.52, 25.46. MS (MALDI-TOF, matrix- α -cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 741.995, Found $741.950(m / z)$. FT-IR (cm^{-1}): 2927, 2853, 1671, 1580, 1314, 1206. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 58.07; H, 3.79; N, 3.76; Found: C, 57.93; H, 3.81; N, 3.96.

Molecule 11: Yield $=11 \% . \mathrm{R}_{\mathrm{f}}=0.56\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.35(\mathrm{~d}, 1 \mathrm{H}, A r-H), 9.30(\mathrm{~d}, 1 \mathrm{H}, A r-H), 9.25(\mathrm{~s}, 1 \mathrm{H}$, $A r-H), 9.18$ (d, 1H, $A r-H), 8.75$ (s, 1H, $A r-H), 8.55$ (m, 1H, $A r-H$), 5.91 (m, 2H), 2.57-2.49 (m, 4H), 1.86-1.25 (16H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=194.33,193.28$, $160.46,159.85,143.63,138.02,137.98,135.88,132.68,132.46,132.07,131.97,130.07$, 129.98, 128.71, 128.46, 128.31, 128.04, 127.23, 125.01, 124.46, 124.14, 120.94, 120.82, 120.67, 62.90, 62.73, 29.71, 28.70, 28.66, 26.53, 25.46. MS (MALDI-TOF, matrix- $\alpha-$ cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 741.995, Found 741.593 (m/z). FT-IR (cm^{-1}): 2919, 2853, $1680,1580,1305,1206$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 58.07; H, 3.79; N, 3.76; Found: C, 57.97; H, 3.83; N, 3.94.

Molecule 12: Yield $=13 \% \mathrm{R}_{\mathrm{f}}=0.48\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.41(\mathrm{~d}, 1 \mathrm{H}, A r-H), 9.31(\mathrm{~d}, 1 \mathrm{H}, A r-H), 9.00(\mathrm{~d}, 1 \mathrm{H}$, $A r-H), 8.80(\mathrm{~s}, 2 \mathrm{H}, A r-H), 8.60(\mathrm{~d}, 1 \mathrm{H}, A r-H), 5.92(\mathrm{~s}, 1 \mathrm{H}, A r-H), 4.95$ (s, 1H, $A r-H), 2.53-$ $2.44(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.19(16 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=194.45,163.37$, $159.93,138.02,135.93,132.95,132.83,132.61,131.91,129.95,129.30,129.05,128.67$,
128.23, 127.99, 127.01, 125.10, 124.17, 123.69, 120.88, 120.68, 62.72, 54.23, 29.09, 28.65, 26.50, 25.45, 25.39. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): Calculated Exact Mass: 726.018, Found 726.097 (m/z). FT-IR (cm^{-1}): 2927, 2853, 1655, 1580, 1314, 1214. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 59.35; H, Br, 21.94; 3.87; N, 3.85; Found:C, 59.15; H, 3.93; N, 3.95.

Molecule 13: Yield $=9 \% . \mathrm{R}_{\mathrm{f}}=0.46\left(\mathrm{CHCl}_{3} / \mathrm{n}\right.$-hexane 6:4), Melting Point: $>300^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.41$ (t, 2H, $A r-H$), 9.23 (s, 1H, $A r-H$), 8.80 (s, 1H, $A r-H), 8.59$ (m, 2H, $A r-H), 5.90(\mathrm{~s}, 1 \mathrm{H}, A r-H), 4.95$ (s, 1H, $A r-H), 2.55-2.46$ (m, 4H), 1.86$1.1(16 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=143.64$ 137.97, 130.10, 130.04, 128.60, 128.42, 54.23,29.09, 28.69, 26.50, 25.45, 25.38. MS (MALDI-TOF, matrix- α-cyano-4hydroxycinnamic acid): Calculated Exact Mass: 726.018, Found 726.070 (m/z). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 59.35$; $\mathrm{H}, 3.87$; $\mathrm{Br}, 21.94$; $\mathrm{N}, 3.85$; Found: C, 58.93; H, 3.93; N, 3.98.

Figure S1: Showing monomeric pair and supramolecular interactions in molecule 12.
The carbonyl imide $(\mathrm{C}=\mathrm{O})$ and thionyl imide $(\mathrm{C}=\mathrm{S})$ bond distances in the PDI crystal structure were reported to be $1.220(7)-1.307(8)$ and $1.621(6)$, respectively. The annular bond distances for $\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 47-\mathrm{C} 48$ were determined to be $1.410(8)$ and $1.429(8)$ respectively. The molecule was obtained as a monomeric $M \cdots M$ combination. The enantiomers are linked by infinite supramolecular contacts with the shortest $\pi-\pi$ contacts of $3.54 \AA$ and also linked by weak $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ bonding interactions.

UV-Vis-NIR studies

Figure S2: UV-Vis-NIR spectra of Br_{2} NDIMes, 4, $\mathbf{5}$ and their corresponding radical anion peaks on addition of cobaltocene in degassed DCM.

Figure S3: UV-Vis-NIR spectra of Br_{2} PDICy, 10, 11, 12, 13 and their corresponding radical anion peak on addition of cobaltocene in degassed DCM.

Theoretical Studies

To investigate the frontier molecular orbitals, DFT calculation was performed at B3LYP/6311++G(d,p)/CPCM/DCM in Gaussian 09 by altering the axially-substituted long alkyl/mesityl groups by the methyl groups to save computational time. Next, we performed electrostatic potential (ESP) calculation for all the molecules and their respective radical anion. ESP plots clearly demonstrate that the neutral molecules have electron deficient central region (blue) and the radical anions have an electron rich region (orange).

Figure S4: ESP diagrams of all molecules in the neutral and radical states.

Figure S5. Spin density distribution (DFT/B3LYP/6-311++G (d,p)/CPCM/DCM) and EPR spectra of 2^{--}and 4^{--}.

NMR studies

Figure S6: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3} at RT.

Figure S7: $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{1}$ in CDCl_{3} at RT

Figure S8: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at RT.

Figure S9: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 2 in CDCl_{3} at RT

Figure S10: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3} at RT.

Figure S11: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{3}$ in CDCl_{3} at RT

Figure S12: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5 in CDCl_{3} at RT.

Figure S13: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 5 in CDCl_{3} at RT

Figure S14: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 6 in CDCl_{3} at RT.

Figure S15: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{6}$ in CDCl_{3} at RT

Figure S16: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 7 in CDCl_{3} at RT.

Figure S17: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 7 in CDCl_{3} at RT

Figure S18: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 8 in CDCl_{3} at RT.

Figure S19: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{8}$ in CDCl_{3} at RT

Figure S20: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$ in CDCl_{3} at RT.

Figure S21: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{B r}_{2} \mathbf{P D I C y}$ in CDCl_{3} at RT.

Figure S22: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{B r}_{2} \mathbf{P D I C y}$ in CDCl_{3} at RT

Figure S23: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ in CDCl_{3} at RT

Figure S24: $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 10 in CDCl_{3} at RT

Figure S25: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ in CDCl_{3} at RT

Figure S26: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of $\mathbf{1 1}$ in CDCl_{3} at RT

Figure S27: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 12 in CDCl_{3} at RT.

Figure S28: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 12 in CDCl_{3} at RT.

Figure S29: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 13 in CDCl_{3} at RT

Figure S30: $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, APT, DEPT-135 spectra of 13 in CDCl_{3} at RT.

Figure S31: Mass Spectrometry of 1, 2 and 3.

Figure S32: Mass Spectrometry of 5 and 6.

Figure S33: Mass Spectrometry of 7, 8 and 9.

Figure S34: Mass Spectrometry of 10, 11and 12.

Figure 35: Mass Spectrometry of 13.

IR Spectroscopy

Figure S36: FT-IR spectra of class I molecules, 1, 2, and 3.

Figure S37: FT-IR spectra of 4, 5, 6, 7 and 9.

Figure S38: FT-IR spectra of class IV molecules, $\mathbf{B r}_{2} \mathbf{P D I C y}, \mathbf{1 0}, 11,12$ and 13.

TableS1: Crystallographic information of molecule 12.

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SBr}_{2}$
Formula weight	728.46
Temperature/K	276.46
Crystal system	triclinic
Space group	P-1
a/Å	11.6632(7)
b/Å	14.6944(8)
c/Å	18.9643(12)
$\alpha /{ }^{\circ}$	91.705(3)
$\beta /{ }^{\circ}$	93.702(3)
$\gamma /{ }^{\circ}$	107.315(3)
Volume/Å ${ }^{3}$	3092.3(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	3.329
μ / mm^{-1}	13.707
F(000)	2920.0
Crystal size/mm ${ }^{3}$	$0.8 \times 0.6 \times 0.2$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.31 to 57.328
Reflections collected	153053
Independent reflections	$15537\left[\mathrm{R}_{\text {int }}=0.2611, \mathrm{R}_{\text {sigma }}=0.2107\right]$
Data/restraints/parameters	15537/0/794
Goodness-of-fit on F^{2}	1.000
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0892, \mathrm{wR}_{2}=0.1308$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2462, \mathrm{wR}_{2}=0.1720$
CCDC No.	2245050

Table S2: Redox potentials (V vs $\mathrm{Ag} / \mathrm{AgCl}$), CV and DPV reported in $\mathrm{DCM},{ }^{a} \mathrm{Calculated}$ from the reduction potential: $E_{\text {LUMO }}=-\left(4.8+\mathrm{E}_{\text {red }}^{1}\right) .{ }^{b} \mathrm{C}$ alculated from theoretical calculation.

Molecule	$\mathbf{E}^{\mathbf{1} / \mathbf{1}}$	$\mathbf{E}^{\mathbf{2}} \mathbf{1 / 2}$	$\mathbf{\Delta \mathbf { E } ^ { \mathbf { a } }}$	$\mathbf{L U M O}^{\mathbf{a}}$	$\mathbf{L U M O}^{\mathbf{b}}$	$\mathbf{H O M O}^{\mathbf{b}}$
	(\mathbf{V})	(\mathbf{V})	$\mathbf{(\mathbf { V })}$	$(\mathbf{e V})$	$(\mathbf{e} \mathbf{V})$	$(\mathbf{e V})$
NDIMes	-0.346	-0.819	0.473	-4.454	-3.671	-7.231
$\mathbf{1}$	+0.084	-0.239	0.323	-4.884	-4.171	-6.456
$\mathbf{2}$	-0.051	-0.408	0.357	-4.749	-4.007	-6.599
$\mathbf{3}$	-0.181	-0.602	0.421	-4.618	-3.955	-6.645
$\mathbf{B r}_{\mathbf{2}} \mathbf{N D I M e s}$	-0.257	-0.693	0.436	-4.143	-3.813	-7.258
$\mathbf{4}$	-0.019	-0.368	0.349	-4.381	-4.106	-6.661
$\mathbf{5}$	-0.099	-0.505	0.406	-4.301	-3.976	-6.681

$\mathbf{6}$	-0.103	-0.536	0.433	-4.297	-4.486	-6.798
$\mathbf{7}$	-0.049	-0.365	0.316	-4.750	-3.849	-6.499
$\mathbf{8}$	-0.143	-0.468	0.325	-4.656	-3.866	-6.328
$\mathbf{9}$	-0.081	-0.412	0.331	-4.719	-3.879	-6.197
$\mathbf{B r}_{2} \mathbf{P D I C y}$	-0.288	-0.469	0.181	-4.512	-3.807	-6.294
$\mathbf{1 0}$	-0.097	-0.207	0.110	-4.703	-4.036	-6.185
$\mathbf{1 1}$	-0.094	-0.198	0.104	-4.705	-4.053	-6.219
$\mathbf{1 2}$	-0.192	-0.354	0.162	-4.608	-3.949	-6.265
$\mathbf{1 3}$	-0.173	-0.333	0.160	-4.627	-3.951	-6.271

Reference:

1. K. Mandal, D. Bansal, Y. Kumar, Rustam, J. Shukla and P. Mukhopadhyay, Chem. Eur. J. 2020, 26, 1060710619.
