Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Insights into luminescence thermal quenching of Mn4+-doped BaLa(Na/Li)(W/Te)O6 double

perovskite red phosphors

Mengyao Zhai ^a, Qiufeng Shi ^{a,*}, Konstantin V. Ivanovskikh ^b, Jianwei Qiao ^a, Lei Wang ^a, Haijie Guo

^a, Ping Huang ^a and Xiao-jun Wang ^{a,c}

^a College of Physics, Taiyuan University of Technology, 030024 Taiyuan, China

Email: shiqiufeng@tyut.edu.cn

^b Department of Experimental Physics, Ural Federal University, 620002, Ekaterinburg, Russia

^c Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

Figure S1: XRD patterns of synthesized (a) BaLaNa_{1-x}Li_xWO₆:0.8%Mn⁴⁺ and (b) BaLaLiW_{0.992}-

_xTe_xO₆:0.8%Mn⁴⁺.

Figure S2: PL spectra of BaLaLiWO₆:x %Mn⁴⁺ (x = 0.4, 0.8, 1.2, 1.6) upon Mn⁴⁺ excitation at 330 nm

BaLaNaWO ₆ :0.8%Mn ⁴⁺							
	X	у	Z	В	Occ		
Ва	0.25000	0.25000	0.25000	0.300	0.500		
La	0.25000	0.25000	0.25000	0.300	0.500		
Na	0.00000	0.00000	0.00000	1.000	1.000		
W	0.50000	0.50000	0.50000	0.200	0.990		
Mn	0.50000	0.50000	0.50000	0.200	0.010		
0	0.26500	0.00000	0.00000	1.500	1.000		

Table S1: Fractional atomic coordinates and isotropic displacement parameters of

BaLaLiWO ₆ :0.8%Mn ⁴⁺						
	Х	У	Z	В	Occ	
Ва	0.25000	0.25000	0.25000	0.300	0.500	
La	0.25000	0.25000	0.25000	0.300	0.500	
Li	0.00000	0.00000	0.00000	1.000	1.000	
W	0.50000	0.50000	0.50000	0.200	0.990	
Mn	0.50000	0.50000	0.50000	0.200	0.010	
0	0.26001	0.00000	0.00000	1.500	1.000	

Table S3: Fractional atomic coordinates and isotropic displacement parameters of

BaLaLiTeO₆:0.8%Mn⁴⁺

	Х	У	Z	В	Occ
Ва	0.25000	0.25000	0.25000	0.300	0.500
La	0.25000	0.25000	0.25000	0.300	0.500
Li	0.00000	0.00000	0.00000	1.000	1.000
Те	0.50000	0.50000	0.50000	0.200	0.990
Mn	0.50000	0.50000	0.50000	0.200	0.010
0	0.26151	0.00000	0.00000	1.500	1.000

Figure S3: SEM images of the as-prepared BaLaLiTeO₆:0.8%Mn⁴⁺.

Figure S4	: Gaussian	fitting of	BaLaNa	1-xLixW0	06:0.8%N	1n ⁴⁺ PLE	spectra
	(a) x = 0; (b)	x = 0.25	; (c) x = C).5; (d) x	= 0.75; (e	e) x = 1.	

 ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g} (eV)$ ${}^{4}A_{2g} {\rightarrow} {}^{4}T_{1g} \left(eV \right)$ Mn⁴⁺-O²⁻ (eV) $^{4}A_{2g} \rightarrow ^{2}T_{2g} (eV)$ x=0 2.461 3.361 3.495 3.823 x=0.25 2.500 3.361 3.526 3.808 3.547 x=0.5 2.533 3.361 3.805 x=0.75 2.580 3.361 3.594 3.784

3.361

3.611

3.773

x=1

2.606

Table S4: Position of each transition energy level in the excitation spectra of $BaLaNa_{1-x}Li_xWO_6:0.8$ %Mn4+ obtained by Gaussian fitting

Figure S5: Gaussian function of PLE spectra of BaLaLiW_{0.992-x}Te_xO6:0.8%Mn⁴⁺ samples (a) x = 0; (b) x = 0.2; (c) x = 0.4; (d) x = 0.6; (e) x = 0.8; (e) x = 1.

Table S5: Energy of Mn⁴⁺ related transitions observed in BaLaLiW_{0.992-x}Te_xO₆:0.8 %Mn⁴⁺ asobtained by Gaussian fitting

 ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g} (eV) \quad {}^{4}A_{2g} \rightarrow {}^{2}T_{2g} (eV) \quad {}^{4}A_{2g} \rightarrow {}^{4}T_{1g} (eV) \qquad Mn^{4+}-O^{2-} (eV)$

x=0	2.593	3.361	3.596	3.761
x=0.2	2.595	3.361	3.598	3.795
x=0.4	2.610	3.361	3.613	3.823
x=0.6	2.614	3.361	3.618	3.848
x=0.8	2.620	3.361	3.622	3.896
x=0.992	2.623	3.361	3.624	3.904

Figure S6: Temperature-dependent integrated emission intensity of (a) $BaLaNa_{1-x}Li_xWO_6:0.8\%Mn^{4+}$ and (b) $BaLaLiW_{0.992-x}Te_xO_6:0.8\%Mn^{4+}$.

Figuse S7: Temperature-dependent decay curves of $Mn^{4+2}E_g$ state in (a) BaLaNaWO₆:0.8%Mn⁴⁺ (b) BaLaLiWO₆:0.8%Mn⁴⁺ and (c) BaLaLiTeO₆:0.8%Mn⁴⁺ upon excitation at 330 nm.

Figure S8: Raman spectra of (a) BaLaNaWO₆:0.8%Mn⁴⁺ (b) BaLaLiWO₆:0.8%Mn⁴⁺ and (c) BaLaLiTeO₆:0.8%Mn⁴⁺.