Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Quantum Transport and Fractional Hall Effect in Moiré Correlated/Anticorrelated Interface Channels

Farzaneh Shayeganfar^{1,2*}, Ali Ramazani^{3†}

¹Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran ²Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 10485, USA ³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139,

USA

^{*} fshayega@umich.edu * ramazani@mit.edu

S1. Twisted armchair circular graphene nanoribbon band structures

Fig. S1: Moiré pattern generated by rotation of two armchair circular graphene nanoribbons by magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$. Band structure of armchair circular tGNs for magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$.

S2. Twisted armchair rectangular graphene nanoribbon band structures

Armchair Rectangular tGNs

Fig. S2: Moiré pattern generated by rotation of two armchair rectangular graphene nanoribbons by magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$. Band structure of armchair rectangular tGNs for magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$.

S3. Local density of states and transmission of twisted armchair circular graphene nanoribbon

Armchair Circular tGNs

Fig. S3: LDOS (a-c) and electron transmission (d-f) of armchair circular tGNs at magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$ and $\theta = 21.79^{\circ}$.

S4. Local density of states and transmission of twisted armchair rectangular graphene nanoribbons

Fig. S4: LDOS (a-c) and electron transmission (d-f) of armchair rectangular tGNs at magic angle $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$ and $\theta = 21.79^{\circ}$.

S5. Size Effect on Transmission of homo-twisted structures

Armchair Rectangular tGNs

Fig. S5: Transmission of twisted armchair homostructure tGN (a-c) for different width at angle θ = 1.1° and θ = 13° and θ = 21.79°.

S6. Size effect on Hall effect of homo-twisted structures

Armchair Rectangular tGNs

Fig. S6: Quantum Hall effect for different width of twisted heterostructure of armchair rectangular thGN; (a-c) the longitudinal conductivity σ_{xx} and (d-f) Hall conductivity σ_{xy} at field (B = 40 T) and at $\theta = 1.1^{\circ}$ and $\theta = 13^{\circ}$ and $\theta = 21.79^{\circ}$.