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We provide geometries extracted from MD trajectories along with results from DFT simulations

and Gromacs topologies ready to run simulations obtained from the Joyce fitting procedure at

this public GitHub repository https://github.com/dpadula85/OFET_strain.

S1 Computational Details

S1.1 Crystal structures

We retrieved the crystal structure for C10–DNBDT–NW from the Cambridge Structural Database

(CSD) [1] (entry 980612). [2]

S1.2 QMD-FF parameterisation

The parameterisation of the QMD-FF for C10–DNBDT–NW occurred by separately fitting pa-

rameters for the aromatic core and the C10 side chain, and afterwards joining the two set of

parameters with homemade scripts.

In general, the total classical FF representing a target molecule is expressed as the sum of an

intra-molecular term Eintra
FF and an inter-molecular term Einter

FF :

Etot
FF = Eintra

FF + Einter
FF (S1)

The inter-molecular term, Einter
FF , accounts for the interactions between the target and the sur-

rounding environment, and is usually expressed as a pairwise sum uinterij between the target’s i-th

atom and the j-th atom of its embedding, which takes the form:

uinterij =

4εinterij

(σinterij

rij

)12

−
(
σinterij

rij

)6
+

(
[qiqj ]inter

rij

)
(S2)

The first term in square brackets on the right side of Eq. S2 is the standard 12-6 Lennard-Jones

(LJ) potential, while the second accounts for the Coulomb charge-charge interaction. The LJ

parameters were taken from similar atom types described in the OPLS force field, [3] whereas
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the point charges have been fitted for each following the RESP procedure [4] on the Molecular

Electrostatic Potential generated at same level of theory used for geometry optimisation, including

solvation effects through the PCM model. [5]

The intra-molecular term, Eintra
FF , governs the internal dynamics. We derived the contributions

to this term from reference QM data obtained with the Gaussian16 code, [6] for each fragment

(either core or side chain). The ground state optimised geometry, Hessian matrix, and vibrational

frequencies were obtained at B3LYP-D3/6-31G(d) level including solvation effects through PCM.

For rotations around σ bonds in the C10 chain we performed relaxed scans at the same level of

theory. We obtained the intramolecular QMD-FF for each fragment using the Joyce parameter-

isation protocol. [7–9] We summarise the procedure in four steps:

(i) assign specific atomic types

(ii) assign a suitable set of internal coordinates (ICs)

(iii) assign a model potential function to each IC

(iv) obtain the intra-molecular parameters (force-constants and equilibrium ICs)

The selected ICs have been classified in two different sets: stiff or flexible, depending whether

rather small displacements from the equilibrium geometry or large amplitude motions are to be

expected. Concretely, all possible stretching and bending coordinates were included in the stiff

set. Furthermore, several dihedrals, as the one ruling the planarity of the C=C double bonds and

their surrounding atoms, were also included in the former set. The dihedrals describing rotations

around σ bonds in the C10 chain were instead considered flexible.

When a model potential function is assigned to each selected IC, Eintra is therefore further

partitioned in several contributions, namely

Eintra
FF = Es + Eb + Est + Eft + Eintra

Nb (S3)
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The first three terms refer to stiff IC, and can be approximated through harmonic potentials, i.e.

Es =
1

2

Ns∑
s

ks(r − r0)2 ; Eb =
1

2

Nb∑
b

kb(θ − θ0)2 ; Est =
1

2

Nst∑
st

kst(ϕ− ϕ0)2 (S4)

The stretching and bending contributions, Es and Eb, are widely used by popular FFs. The

third expression (Est) is seldom employed to describe torsions of stiff dihedral angles in standard

approaches. Yet, it appears to be better suited to account for the internal energy due to small

and fast distortions of a dihedral ϕ from its equilibrium position ϕ0. The Joyce procedure

routinely employs the Est term, to mimic the behaviour of a stiff and fast vibrating torsion, as

those ruling the planarity of aromatic rings or conjugated double bonds. [7,10] The second-to-last

term of Eq. S3 refers to flexible ICs, expected to experience larger distortions during simulation.

In fact, the term

Eft =

Nft∑
µ

Ncosµ∑
j

kftjµ
[
1 + cos(nµj δµ − γµj )

]
(S5)

(where δµ is the µ-th flexible torsion, kstjµ its force constant, nµj the multiplicity and γµj a proper

phase), is devised to describe large amplitude displacements induced by a flexible dihedral, e.g.

a rotation around a σ bond. The last term of Eq. S3, contains the non-bonded intra-molecular

interactions, implemented, similarly to the inter-molecular term (Eq. S2), as a sum of electrostatic

charge-charge and Lennard-Jones (LJ) terms, expressed as

Eintra
Nb =

∑
i

∑
i<j

qintrai qintraj

rij
+
∑
i

∑
i<j

4εintraij

[(
σintraij

rij

)12

−
(
σintraij

rij

)6]
(S6)

Although εintra and σintra can in principle assume different values with respect to εinter and σinter,

in most popular transferable FFs the non-bonded contributions are counted among all possible

pairs of interacting sites i-j, adopting the same set of LJ and charge parameters for both inter-

molecular and intra-molecular interactions. Additionally, one may decide to only parameterise

the intra-molecular part of the force field, to describe the internal dynamics of the chromophore,
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or also the inter-molecular part, which affects distances and stacking between different molecules.

While both are important for the problem at hand, we limited the parameterisation to the intra-

molecular part, [10] resorting to inter-molecular parameters taken from the OPLS force field, [3]

similarly to what done in unrelated studies. [10,11]

Once the FF functional form and the underlying IC’s collection have been selected, step (iv) can

be accomplished and a complete set of QMD-FF parameters eventually retrieved by minimising

the functional

Iintra =
3N−6∑
K≤L

2W ′′
KL

C

[
HKL −

(
∂2Eintra

FF

∂QK∂QL

)]2
g0

+

Ngeom∑
g

Wg

[
∆Ug − Eintra

g

]2
(S7)

In the first term on the right side of Eq. S7 the sum runs over the 3N-6 dye’s coordinates, C is

a normalization factor, QK is the Kth normal mode, whereas HKL and ∂2Eintra

∂QK∂QL
are QM and FF

Hessian matrix elements, both evaluated in the minimum energy geometry (g0). The normalised

diagonal elements of the weight matrix W′′ are set at twice the value of those corresponding to

the off diagonal terms. In the second term, ∆Ug is the QM computed energy difference between

the the g and g0 geometries and Ngeom is the number of the different geometrical arrangements

sampled for each target molecule. The weights Wg are all initially set the same value.

Finally, we obtained the total FF for C10–DNBDT–NW replacing hydrogen atoms in the pre-

viously parameterised FF for the π–conjugated core with alkyl side chains of the appropriate

length. The topology merge was carried out with home made scripts, and missing stretching,

bending, and torsional terms were added by hand using parameters transferred from the alkyl

side chain parameterisation. We introduced intramolecular LJ terms among side chains and be-

tween core and chains, to avoid undesired proximity. We fitted point charges, according to the

RESP procedure, [4] to the B3LYP-D3/6-31G(d) electrostatic potential of the entire molecule.
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Table S1: Number of internal coordinates and standard deviation of the QMD-FFs fitting procedure.

Fragment IC σ / kJmol−1

core 217 0.005
chain 139 0.057

Table S2: RMSD between QM and MM optimised geometries in terms of bond lengths, bending angle,
dihedrals and molecular normal modes (total) for C10–DNBDT–NW.

Bond lengths / Å Bending angles / deg Dihedrals / deg Total / Å

0.000 0.077 1.302 0.050
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Fig. S1: QM (dots) and MM (dashed lines) potential energy profiles for the dihedral angle
between the π–conjugates moiety and the alkyl substituent for C10–DNBDT–NW.

S1.3 MD simulations

We ran classical MD simulations on crystals with the gromacs 2020.5 software. [12] We gener-

ated a 1× 5× 19 supercell containing 190 molecules in total (19380 atoms). We adopted periodic

boundary conditions taking into account long range electrostatic effects through the PME algo-

rithm. [13] We used an integration time step of 1 fs, imposing contraints on all bonds through the

LINCS algorithm, [14] adopting a Berendsen thermostat to control temperature. [15]
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The computational protocol consisted of an initial steepest descent minimisation, followed by

a slow NVT heating procedure starting from 25 K, initially carried out keeping aromatic cores

frozen, and gradually releasing them at 300 K. After equilibrating the system at the target

temperature in NVT conditions for 2 ns, we carried out a production run in NVT conditions, for

10 ns. The last 5 ns of this trajectory were used to evaluate properties at ε = 0.

To evaluate electronic properties at various strain values, we started from the last step described

above, and ran analogous 20 ns production simulations, this time imposing LINCS constraints

only on bonds involving hydrogen atoms, and switching temperature to Bussi thermostat. [16]

Before restarting the run, we reduced (for ε < 0, or increased for ε > 0) the box size by 0.5%, and

then restarted the trajectory in the same conditions (NVT) for 20 ns. We repeated this procedure

for each value of ε in steps of 0.5%, until a maximum strain of ε = ±3% was reached. We used

the last 10 ns to evaluate electronic couplings between pairs of molecules and their fluctuations,

extracting snapshots every 50 ps. To evaluate spectral densities, we ran, for each value of ε, a

short 10 ps trajectory, extracting snapshots every 10 fs.

All MD trajectories were processed and analysed with Gromacs tools and exploiting the MD-

Analysis python library [17–21] in homemade scripts.

S1.4 Electronic calculations

Unless stated otherwise, we performed all quantum chemical calculations with the Gaussian16

software, [6] adopting B3LYP as functional including Grimme’s D3 dispersion correction, [22] and 6-

31G* as basis set, for a direct comparison with previously published data. [2] All calculations took

into account environmental polarisation effects through the PCM model (ϵPCM = 4). [10,23,24] For

the evaluation of hole transport properties we performed geometry optimisations, frequency and

single point calculations in both the neutral and positively charged (q = +1) state. We computed

hole transfer integrals between frontier orbitals as Jij = ⟨ϕi|F̂ |ϕj⟩, where ϕi and ϕj are the

unperturbed HOMO orbitals of the isolated monomers, respectively, and F̂ is the Fock operator

of the dimer. [10,25–27] Snapshots extracted from all trajectories were processed by cropping side
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chains after the first carbon atom, so as to leave the aromatic core substituted with methyl groups,

in analogy to our previous work and to what similarly done by others, [10,28–30] before running

electronic calculations at B3LYP-D3/6-31G* level, including environmental polarisation effects

through the PCM model (ϵPCM = 4). [24]

S1.5 Crystal phonons

It is widely known that the computation of crystal phonons is an extremely time-consuming

process. [27,31] To develop a method that can be used as a predictive tool for the analysis of

new materials, we here lower the computational burden by resorting to the self-consistent charge

density functional tight-binding(SCC-DFTB) method as implemented in the DFTB+ software

package. [32,33] DFTB is a nonorthogonal tight-binding method based on a second-order expansion

of the DFT total-energy expression, which leads to computations about 3-4 orders of magnitude

faster than DFT.

The 3-ob-1 Slater-Koster set parameters have been employed for the molecule under study. [34,35]

The atomic positions of the unit cell have been optimized keeping the experimental lattice values

fixed, using the conjugate gradient method with a force-threshold criterion of 10−8 Hartree per

Bohr radius. We have used periodic boundary conditions employing a 1× 2× 2 Monkhorst-Pack

k-point sampling scheme. [36] The Lennard-Jones dispersions [37] have been included to take into

account the weak van der Waals interaction in the crystalline phase.

To investigate the phonon dispersion relations in crystalline phases, we have employed the frozen

phonon calculation in which the sampling of the q-space relies on calculation of second deriva-

tives of the energy on sufficiently large supercells. In line with what has been done in previous

works, [27,38,39] a 1x2x2 supercell has been used in order to have larger dimension for the high-

mobility (b, c) plane. These calculations have been carried employing a 1x1x1 k-point sampling

Monkhorst-Pack scheme.
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S1.6 Hole mobility calculations

S1.6.1 Fermi’s Golden Rule

We evaluated rate constants by first order time-dependent perturbation theory, Fermi’s Golden

Rule (FGR), following Eq. 1 reported in the main text, where the FCWD F (∆Eij , T ) is defined

as:

F (∆Eij , T )=
1

Z

∑
vi,vj

e−βEvi |
〈
vi
∣∣vj〉|2δ(Evi − Evj −∆Eij

)
(S8)

where
〈
vi
∣∣vj〉 is the Franck-Condon integral, Z is the vibrational partition function of the initial

electronic state, β = 1/(kBT ), and the sum runs over all vibrational states of |i⟩ and |j⟩.

Here, we have adopted the generating function (GF) approach for the evaluation of F (∆Eij , T ),
[40,41]

which, in the framework of harmonic approximation for nuclear motions, allows to compute

F (∆Eij , T ) considering the whole set of the normal modes of both initial and final states, taking

into account effects due to both changes of the equilibrium positions and of vibrational frequen-

cies, as well as the effects due to normal mode mixing. The GF approach allows to handle the

infinite summations appearing in Eq. S8 exploiting the integral representation of Dirac’s delta

function and Duschinsky’s normal mode transformation: [42]

Qi = JQj +K (S9)

where J and K are the rotation matrix and the equilibrium displacement vector, respectively,

while Qi and Qj are the normal coordinates of the electronic states |i⟩ and |j⟩.

We obtained Franck-Condon weighted densities of states (FCWDs) using a development version of

the MolFC package, [43] using DFT/B3LYP-D3/6-31G(d) for geometry optimisations and normal

modes analyses. We adopted the curvilinear coordinate representation of normal modes, to

prevent that large displacements of a angular coordinates could reflect into large shifts from the

equilibrium positions of the involved coordinate. Such unphysical effect is unavoidable when

using rectilinear coordinates and requires the use of high order anharmonic potentials for its
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correction. [44]

S1.6.2 Transient Localisation Theory

According to transient localisation theory (TLT), the effects of dynamic disorder can be monitored

by a transient localisation over a length L within a fluctuation time scale given by the inverse of

the typical intermolecular oscillation frequency τ = 1/ω0:

µ =
e

kBT

L2(τ)

2τ
, (S10)

In this work, a typical value (τ = 1 ps) [45] for the intermolecular oscillation time is assumed

for all the molecules; nevertheless, the dependence of the mobility on the molecular fluctuation

time is weak, [45] so that different τ in a realistic range [0.1; 100] ps would lead to very similar µ

values. [45]

As described in greater details in ref.s 46 and 47, this method can be summarised in the following

steps:

1. Define the supercell of the system, that is, the positions of all molecular sites in presence

of periodic boundary conditions. Obviously, the supercell must be larger than the L(τ)

reached by the moving charge. This can be obtained by checking convergence for different

system sizes.

2. Evaluate the oscillations of the transfer integral σ for all the interacting couples in the

crystal.

3. Build a disordered Hamiltonian of the size of the supercell displaying off-diagonal disorder

given by the oscillations σ

4. Diagonalize the Hamiltonian to calculate L(τ)

5. Repeat steps 2-4 several times with different realisations of disorder (to take into account the

random nature of the disorder in real systems) and compute average L(τ). The statistical
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error on L(τ) can be made arbitrarily small by increasing the number of realizations.

6. Evaluate the mobility through Eq. S10

S1.6.3 Kinetic Monte Carlo

We carried out kMC simulations at each value of strain on snapshots extracted from classical MD

trajectories at that value of strain. Since boxes from classical MD simulations are too small to

perform statistically meaningful simulations, we combined 200 snapshots in a mesoscopic lattice,

as described in ref. 48. For each snapshot we computed transfer integrals with our ML model,

using the centres of mass of the molecules as sites in the kMC simulations: the simulation is thus

“quasi 2D”, because the centres of mass approximately lie on the (b, c) plane. The mesoscopic

lattice is created by combining the 200 snapshots extracted from classical MD trajectories in

a b × c 10 × 20 grid, [48] because c is the main transport axis. Note that this grid refers to

MD simulation boxes, which are 1 × 5 × 19 supercells. The kMC mesoscopic lattice thus has

the final dimensions of 50b × 380c, with respect to the crystallographic unit cell. Each kMC

trajectory is propagated by randomly placing the hole in the box, and allowing hopping to one

of the nearest neighbours as the only possible process at each time step. The hopping rate kij

between sites i and j is computed on-the-fly according to Fermi’s Golden Rule (FGR) given the

value of the transfer integral Jij previously computed through the ML model and the Franck–

Condon Weighted Density of States (FCWD, F (∆Eij , T )) previously computed through geometry

optimisation and frequency calculations on the neutral and charged states.

S2 Structural Analyses

Since the distance between monomers r is not the only factor affecting transfer integrals J , but

also the relative orientation plays a role, we have performed further analyses to find the rationale

behind the apparently irregular behaviour of transfer integral J2.
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Fig. S2: Local reference frames (top) and definition of Euler angles (bottom) used for the
structural analyses reported in this section.

We defined a local reference frame on each monomer (see Fig. S2) constituting the dimer for

which we computed J2 at DFT level:

1. we obtained the least squares plane passing through all atoms in the π–conjugated moiety,

defining the normal to this plane as the local z axis;

2. the local reference frame has its origin in the projection of the centre of mass onto the least

squares plane;

3. the long molecular axis x is chosen such that it passes through the projections of substituted

carbon atoms of the π–conjugated core onto the least squares plane;

4. the short molecular axis y is obtained from the cross product of the other two axes: y = z×x,

to define a right-handed reference frame.
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Once the two reference frames have been defined, the unit vectors are collected in the columns of

two matrices, R1 and R2. The relative orientation of the two monomers is then described by the

Euler angles associated to the transformation matrix U = R2R
−1
1 that transforms the reference

frame R1 onto reference frame R2. If we consider the two monomers as rigid bodies, Euler angles

represent a relative motion named: (i) roll, for rotation around x (angle ϕ); (ii) pitch, for rotation

around y (angle θ); (iii) yaw, for rotation around z (angle ψ).

S2.1 Strain along c

In Table S3 we report the average value of each angle, as well as its standard deviation, obtained

from MD simulations for strain along the c axis.

Table S3: Orientation analysis for strain along c.

ε / %
J1 J2

ϕ / ◦ θ / ◦ ψ / ◦ ϕ / ◦ θ / ◦ ψ / ◦

−3.0 −0.02± 1.90 0.13± 4.25 −0.48± 4.12 −8.12± 2.78 14.55± 4.07 −10.37± 3.95
−2.5 −0.01± 1.95 0.05± 4.14 −0.27± 4.14 −8.37± 2.78 15.18± 4.03 −10.04± 3.68
−2.0 0.13± 1.86 −0.43± 3.73 −0.12± 4.14 −8.72± 3.13 15.66± 4.45 −10.28± 4.21
−1.5 −0.10± 2.09 0.45± 4.27 −0.50± 4.47 −8.62± 3.26 15.60± 4.54 −10.49± 4.35
−1.0 −0.11± 2.05 −0.18± 4.14 −0.40± 4.11 −8.55± 3.21 15.70± 4.80 −10.16± 4.17
−0.5 0.28± 2.11 −0.61± 4.68 0.20± 4.56 −8.28± 3.06 15.69± 4.62 −10.11± 3.89
0.0 0.21± 1.99 0.04± 4.08 1.04± 3.56 −8.37± 2.73 16.18± 3.77 −9.61± 3.96
1.0 0.13± 2.29 −0.30± 4.50 −0.03± 3.95 −8.06± 3.02 15.49± 4.44 −10.19± 4.38
1.5 0.20± 2.24 −0.47± 5.02 −0.07± 4.61 −8.13± 3.33 15.37± 5.15 −10.29± 4.73
2.0 0.19± 2.20 −0.53± 5.12 −0.20± 4.21 −8.10± 3.42 15.99± 5.11 −11.56± 4.31
2.5 −0.59± 2.38 −1.38± 5.05 0.18± 4.27 −7.12± 3.32 9.61± 6.41 −8.69± 4.20
3.0 −0.27± 2.40 0.14± 5.09 −0.16± 4.39 −7.10± 3.41 7.18± 5.61 −9.46± 4.39

From Table S3 we highlight that, for the pair of monomers giving rise to J1, the relative orientation

remains approximately the same. However, for the pairs of monomers giving rise to J2, we notice

that for ε > 2% Euler angles slightly decrease: for ϕ and ψ it is difficult to say whether this

reduction is statistically significant, since it is rather modest. On the other side, for θ the

reduction is significant, and it brings the two monomers in a more parallel arrangement, which

favours electronic interactions between frontier orbitals. Since this analysis is based on a rigid

body approximation, which may not be appropriate for molecules, we tried to understand whether
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this is a feature of the specific pair of monomers that we picked for DFT computations, or whether

this feature is present for all pairs giving rise to a J2 transfer integral. In Table S4, we report the

results of these structural analyses for all pairs of monomers in the aggregate.

Table S4: Aggregate orientation analysis for strain along c.

ε / %
J1 J2

ϕ / ◦ θ / ◦ ψ / ◦ ϕ / ◦ θ / ◦ ψ / ◦

−3.0 0.00± 2.06 0.01± 3.58 0.00± 3.66 1.10± 7.24 15.77± 4.33 −8.75± 4.07
−2.5 −0.01± 2.11 0.01± 3.68 −0.01± 3.69 1.07± 7.22 15.94± 4.40 −8.78± 4.10
−2.0 −0.01± 2.14 0.01± 3.79 −0.01± 3.76 1.08± 7.28 16.22± 4.51 −8.77± 4.18
−1.5 0.00± 2.16 −0.01± 3.81 −0.01± 3.77 1.05± 7.21 16.17± 4.59 −8.79± 4.19
−1.0 −0.01± 2.18 −0.01± 3.90 −0.03± 3.83 1.02± 7.19 16.27± 4.69 −8.80± 4.24
−0.5 −0.01± 2.19 0.00± 3.95 0.01± 3.88 1.02± 7.17 16.39± 4.72 −8.80± 4.32
0.0 0.01± 2.24 0.01± 4.06 −0.01± 3.98 0.99± 7.18 16.52± 4.82 −8.80± 4.38
1.0 −0.01± 2.30 0.01± 4.18 0.00± 4.04 0.95± 7.10 16.52± 5.04 −8.80± 4.49
1.5 0.00± 2.37 0.03± 4.35 0.01± 4.15 0.94± 7.07 16.50± 5.20 −8.79± 4.58
2.0 −0.02± 2.53 0.01± 4.47 −0.01± 4.11 1.08± 6.98 14.32± 6.34 −8.59± 4.58
2.5 −0.03± 2.56 0.03± 4.55 −0.04± 4.17 1.05± 6.94 14.16± 6.52 −8.67± 4.63
3.0 0.00± 2.59 0.01± 4.62 −0.01± 4.24 1.05± 6.90 14.06± 6.75 −8.63± 4.68

In Table S4 it is clear that the orientational behaviour of pairs of monomers is different when

averaged over all the aggregate, confirming that the pair chosen for the DFT computation of J2

shows a structural behaviour that is peculiar and deviating from average. It is evident that better

statistical sampling would thus yield a more regular behaviour for J2, as we observe for the data

originating from the ML model.

S2.2 Strain along b

In Table S5 we report the average value of each angle, as well as its standard deviation, obtained

from MD simulations for strain along the b axis.
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Table S5: Orientation analysis for strain along b.

ε / %
J1 J2

ϕ / ◦ θ / ◦ ψ / ◦ ϕ / ◦ θ / ◦ ψ / ◦

−3.0 −0.13± 1.98 0.35± 4.33 0.24± 3.98 −8.61± 2.92 16.81± 4.36 −10.26± 3.66
−2.0 −0.09± 2.03 0.06± 4.52 0.12± 3.80 −8.62± 3.17 16.31± 4.63 −10.74± 4.16
−1.0 −0.05± 1.99 −0.12± 4.68 0.09± 4.57 −8.30± 3.06 15.88± 4.74 −10.31± 4.21
0.0 0.21± 1.99 0.04± 4.08 1.04± 3.56 −8.37± 2.73 16.18± 3.77 −9.61± 3.96
1.0 0.04± 2.46 0.14± 5.17 0.44± 4.70 −8.31± 3.53 15.49± 5.11 −9.96± 4.81
2.0 0.11± 2.21 −0.27± 4.90 0.07± 4.63 −8.37± 3.24 15.26± 4.83 −10.17± 4.54
3.0 0.24± 2.76 0.82± 4.60 −0.28± 5.01 −7.94± 3.15 10.49± 4.97 −8.96± 4.79

Also in this case, for the pairs of monomers giving rise to J2, we notice that for ε > 2% Euler

angles slightly decrease, with a significant reduction especially for θ. In Table S6, we report the

results of these structural analyses for all pairs of monomers in the aggregate.

Table S6: Aggregate orientation analysis for strain along b.

ε / %
J1 J2

ϕ / ◦ θ / ◦ ψ / ◦ ϕ / ◦ θ / ◦ ψ / ◦

−3.0 −0.01± 2.03 0.00± 3.92 −0.01± 3.45 0.87± 6.78 16.58± 4.67 −8.88± 3.87
−2.0 −0.01± 2.10 −0.01± 3.95 −0.02± 3.63 0.90± 6.93 16.59± 4.71 −8.83± 4.08
−1.0 0.00± 2.18 0.01± 4.01 −0.01± 3.78 0.93± 7.01 16.48± 4.78 −8.83± 4.18
0.0 0.01± 2.24 0.01± 4.06 −0.01± 3.98 0.99± 7.18 16.52± 4.82 −8.80± 4.38
1.0 −0.01± 2.33 0.00± 4.10 0.00± 4.15 1.02± 7.26 16.31± 4.91 −8.75± 4.58
2.0 0.00± 2.41 0.01± 4.18 −0.01± 4.32 1.05± 7.29 16.05± 5.03 −8.73± 4.75
3.0 0.03± 2.56 −0.02± 4.29 0.00± 4.48 1.22± 7.38 14.27± 5.90 −8.58± 4.92

Also in this case the orientational behaviour of pairs of monomers is different when averaged

over all the aggregate, confirming that the pair chosen for the DFT computation of J2 shows a

peculiar structural behaviour, and that the irregular pattern observed in Fig 2 could be better

characterised with a larger statistical sampling for DFT data, possibly providing a behaviour

similar to what obtained with the ML model.
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S3 Machine Learning models

We trained and evaluated ML models exploiting the Scikit-learn python library [49] in homemade

scripts. The Coulomb matrix elements Cij are defined as

Cij =


0.5Z2.4

i , i = j

ZiZj

rij
, i ̸= j

(S11)

This description was introduced to provide a rotationally and translationally invariant represen-

tation of molecules that would require as input the same data used for typical quantum chemical

calculations, [50] i.e. atomic numbers and coordinates. We can thus represent a dimer through

a Coulomb matrix. The Coulomb matrix can be reordered such that atoms belonging to each

monomer are consecutive, so that it will be constituted by four blocks: [51,52] two different intra-

molecular blocks (on the diagonal), which are the Coulomb matrices of the monomers, and two

inter-molecular blocks, which depend on distances rij between pairs of atoms belonging to two

different monomers. Since it is well known that transfer integrals are mostly affected by inter-

molecular motions, [53] to reduce the number of parameters of the ML model to avoid overfitting

it is possible to use as input to the ML model only one of the two equivalent off-diagonal inter-

molecular blocks of the Coulomb matrix. Thanks to this strategy described by Wang, [51] great

performances in terms of errors and speed were achieved in the calculation of transfer integrals

for case-study molecules, [51] even exploring the effect of various algorithms. [52] Since our training

set size is limited to ≈ 10000 DFT evaluations, using a smaller input size allows reducing the

parameters of the ML models, thus limiting the possibility of overfitting.

We used the intermolecular portion of the Coulomb matrix as input for various MLmodels, namely

k–Nearest Neighbours (KNN, k = 13), Kernel Ridge Regression (KRR) with either Laplacian or

Gaussian (Radial Basis Functions, RBF) kernel, Lasso Regression, and Random Forest. The best

hyperparameters for each model were identified minimising the average cross-validation RMSE

with a grid search and a K-Fold (K = 5) cross-validation scheme. The bounds for the various
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hyperparameters of each model are reported in Table S7.

Table S7: Hyperparameter tuning for Machine Learning models used in this study.

Model
H1 H2 H3

name range opt name range opt name range opt

KNN metric mi, eu, maa mi dist uni, wb uni k ] 0, 20 ] 13
KRR-LAPL α [ 1e−4, 1e3 ] 0 γ [ 1e−4, 1e3 ] 1e−3

LASSO α [ 1e−4, 1e3 ] 1e−3
KRR-RBF α [ 1e−4, 1e3 ] 1e−4 γ [ 1e−4, 1e3 ] 1e−4

a mi: Minkowski distance, eu: Euclidean distance, ma: Manhattan distance

b uni: uniform, w: weighted

In a first screening of models, we identified KRR-RBF as the model with the lowest cross-

validation error, but it yields some predictions that are negative, a feature that we attributed to

its non-linearity. Since the training was conducted on the absolute value of the transfer integral

|J |, thus no negative predictions are expected, we decided not to use this model itself, but rather

to combine it with the second best model, the Random Forest one, in a stacked estimator. A

stacked estimator is yet another Machine Learning model that learns how to combine the predic-

tions of several other models to minimise the error. The resulting stacked model yields predictions

that are comparable, in terms of error, to the ones obtained with the KRR-RBF model, but it

does not produce any negative value of the transfer integral.

S19



KRR-LAPLACIAN LASSOKNN

RF KRR-RBF STACK-KRR-RF

Fig. S3: Correlation between transfer integrals computed with DFT and various ML models on
the test set (30% of the total data, ≈ 3000 points).

The more reasonable behaviour of the RF and stacked model, in comparison to the KRR-RBF

model, is also evident from the learning curves, where for KRR-RBF we notice an increase of

the error on the training set as it gets larger, together with a sudden reduction of the error and

variance on the cross-validation set predictions.
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RF KRR-RBF STACK-KRR-RF

Fig. S4: Learning curves for the best ML models.

S4 Extended Hückel
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Fig. S5: Comparison between DFT and Extended Hückel transfer integrals.
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S5 Spectral density calculations

The spectral density (S(ω)) of the transfer integral J is defined as

S(ω) =
ω

kBTπ

∫ ∞

0
Ri(t) cosωtdt (S12)

where kB is the Boltmzann constant, and Ri(t) is the autocorrelation function of the transfer

integral J , defined as

Ri(tj) =
1

N − j

N−j∑
k=1

∆Ji(tj + tk)∆Ji(tk) (S13)

∆J(t) = J(t)− J(0) (S14)

which can be computed from the time series of the transfer integral J(t) obtained along a classical

MD trajectory. In our case, we computed transfer integrals over 10 ps trajectories, evaluating

them every 10 fs, for each value of strain. The spectral densities reported in Fig. 3 in the main

text were obtained computing all the autocorrelation functions for each transfer integral J in

the simulation box, and then averaging them after grouping according to the transfer integrals

type (either J1 or J2). Finally, Eq. S12 was applied to these average autocorrelation functions to

obtain the spectral densities.

S6 Interaction Networks

A novel point of view on charge transport in organic materials was provided some years ago by

Savoie: [54] recognising the analogy between the weighted adjacency matrix, describing the mag-

nitude of connections between vertices of graph, and the electronic Hamiltonian of a molecular

aggregate, they analysed charge transport in amorphous aggregates of electron acceptors defin-

ing graph descriptors correlating with transport properties. [55] The key point is to compute all

electronic interactions between nearest neighbours in the aggregate: they achieved this computa-
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tionally intensive task resorting to Extended Hückel Theory. Our ML algorithm enables the same

kind of analysis with greater accuracy and speed. In essence, the weighted adjacency matrix A

of a connected graph is replaced with the tight binding electronic Hamiltonian defined as

A = Ĥ =
N∑
i

Ei |ϕi⟩⟨ϕi|+
N∑
i

N∑
j ̸=i

Jij |ϕi⟩⟨ϕj | (S15)

where specific site energies of the orbitals involved in the transport, Ei, have been usually

neglected. A graph is also characterised by two more matrices: the diagonal degree matrix

Sii =
∑

i,j Aij , and the laplacian matrix L = S − A. Once a graph is defined, it is possible

to filter connections between sites by setting an arbitrary threshold JT , and considering sites i

and j connected if Jij ≥ JT . Thanks to the availability of all possible transfer integrals along

MD trajectories, we computed the electronic interaction network along the trajectories, and anal-

ysed the graph obtained by averaging over time. Furthermore, the same authors introduced a

descriptor derived from classical resistor theory to characterise charge transport in lattices and

amorphous materials. [55] The Moore–Penrose inverse of the laplacian matrix of the graph, L+,

is computed to build the resistance distance matrix Ωij = L+
ii + L+

jj − L+
ij − L+

ji. The charge

transport descriptor is named Kirchoff Transport index, defined as

KT =
1

N2

∑
i,j

Λij (S16)

Λij =


0, i = j

Ω−1
ij , i ̸= j

(S17)

where N2 is a normalisation factor based on the number of sites in the system, and Λ is the

admittance distance matrix. KT describes the resistivity of a network of classical resistors, and

in Fig. 4 we report its relative variation (defined similarly to Eq. 3) as a function of mechanical

strain ε, also analysing contributions due to each type of transfer integral, i.e. building the graph

only using J1 or J2 transfer integrals.
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S7 Kinetic Monte Carlo mobilities

In Table S8 we report the mobilities obtained from kMC simulations used for Fig. 5 of the main

manuscript.

Table S8: Hole mobility µ (cm2V−1 s−1) at different strain evaluated using kMC.

Strain along b Strain along c

Strain µ Strain µ

−3% 13.44 ± 0.17 −3% 18.61 ± 0.19
−2% 15.03 ± 0.18 −2% 17.50 ± 0.19
−1% 13.55 ± 0.16 −1% 16.16 ± 0.18
0 13.62 ± 0.16 0 13.62 ± 0.16

+1% 11.90 ± 0.15 +1% 10.72 ± 0.15
+2% 12.30 ± 0.16 +2% 8.32 ± 0.12
+3% 10.51 ± 0.15 +3% 7.26 ± 0.09
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Deshaye, T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann,
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