Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information (SI)

High Efficiency Flexible PEDOT:PSS/Silicon Hybrid Heterojunction Solar Cells Employing Simple Chemical Approach

Deepak Sharma^{1,2}, Avritti Srivastava^{1,2}, Jai S. Tawale³, Pathi Prathap^{1,2}, Sanjay K. Srivastava^{1,2)*}

¹Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

³Indian Reference Materials Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India *E-mail: srivassk@nplindia.org

Figure S1. Energy diagram of PEDOT:PSS/n-Si interface.

(A)

(B) Silicon wafer etching rate in aq. 20% KOH solution:

The Si wafer of thickness $200\pm20 \ \mu m$ were thinned down using aq. 20% KOH solution at 75±5 °C temperature. The thickness of wafer at various etching time was noted and plotted in the graph shown below. The required thickness of ~50 μm is obtained by dipping the wafer in alkali solution for 65 min and the etching rate is found to be nearly 2 $\mu m/min$.

Figure S2. (a) Etching rate estimation from Si wafer thickness vs etching time plot and (b) image of thin-flexible Si wafer prepared in laboratory.

(C) Detailed FESEM analysis using ImageJ software for estimating the (i) thickness of wafers (ii) micro-pyramids dimensions and distribution in THSCs with differently textured surfaces:

- (i) Untextured (planar) TS_0 surface morphology is shown in Fig. S3 (a) and thickness in Fig. S3 (b) which is ~50 µm. The thickness of different textured TSs were obtained between 50 µm to 40 µm as shown in Fig. S3, so 45 ± 5 µm cells to be fabricated from prepared ~50 µm silicon wafer. Thus, we can say the thickness reduces as texturing time increases and for 60 min i.e., TS_{60} it is 40 µm thin flexible textured Si wafer.
- (ii) The height is measured for micro-pyramids on different THSCs surface (Fig. S3 and S4), it is observed that the height of most of micro-pyramid for THSC₁₅ ranges from 0.5-2.6 μ m, THSC₃₀ ranges from 1.4-2.9 μ m, THSC₄₅ ranges from 2.6-5.0 μ m, and THSC₆₀ ranges from 3.6-7.4 μ m. The size and distribution are shown in Fig. S5.

Figure S3. FESEM images showing (a) TS_0 [lateral view]; thickness of thin flexible Si wafer [cross sectional view]: (b) $TS_{0,}$ (c) TS_{15} , (d) TS_{30} , (e) $TS_{45,}$ (f) TS_{60} respectively.

Figure S4. Representative FESEM images (cross sectional view) showing height of pyramid on thin flexible HHSCs (a) THSC₁₅, (b) THSC₃₀, (c) THSC₄₅, (d) THSC₆₀ respectively.

Figure S5. Statistically analysed FESEM images for different THSCs for a constant area of 2752 μ m² using ImageJ, (a) Gaussian distribution of the micro-pyramid's base size for different THSCs, (b) Percentage area of unoccupancy of micro-pyramids in the surface of different THSCs, (c) Variation of average dimension (base) of the micro-pyramids for different THSCs samples.

(D) Optical

Figure S6. (a) Absorbance and **(b)** Transmission curves for 180 µm thick and 50 µm thin planar Si wafer.

Figure S7. Absorption depth v/s wavelength. Red line is for 50 μ m thin and Black line for 180 μ m thick Si wafer.

(E) FDTD Simulation

Figure S8. Simulated (a) Reflectance and (b) Transmittance spectra of planar thin Si and micro-textured thin Si.

Figure S9. Simulated optical generation rate profile using FDTD for (a) planar and (b) micropyramid textured thin Si.

Table S1: Comparison of MCLT of Si wafers without and with SiO_x layer.

Figure S10. Representative FESEM image showing PEDOT:PSS thickness on (a) TS_0 , (b) TS_{30} , and (c) TS_{60} samples.

Figure S11. Representative high magnification FESEM image for Si wafer after aq. KOH thinning.

Table S2. PV performance parameters of THSCs fabricated on three different batches with statistical analysis. The 'Batch 3' parameters are chosen in the main manuscript for comparative analysis and discussion.

Solar Cell and				Batch 3		Statistics
performance		Batch 1	Batch 2	(champion PCE cell batch)		of 3 batches
parameters						
THSC ₀	$V_{oc}(V)$	$0.498 {\pm} 0.005$	$0.478 {\pm} 0.007$	0.498±0.010	0.507	0.491±0.012
	J _{sc} (mA/cm ²)	20.16±0.29	19.02±0.06	20.61±0.47	20.40	19.93±0.51
	FF (%)	36.30±4.65	49.40±0.92	37.31±7.40	43.64	41.00±6.55
	PCE (%)	4.03±0.33	4.49±0.23	3.84±0.85	4.51	4.12±0.32
THSC ₁₅	$V_{oc}(V)$	0.481 ± 0.006	0.473±0.004	0.493±0.005	0.493	0.482 ± 0.008
	J _{sc} (mA/cm ²)	21.60±0.57	22.92±0.61	22.91±1.69	21.86	22.47±1.37
	FF (%)	46.05±1.68	46.42±3.98	46.26±2.48	46.03	46.24±2.23
	PCE (%)	4.77±0.07	4.80±0.13	5.23±0.55	4.96	4.93±0.29
THSC ₃₀	$V_{oc}(V)$	$0.484 {\pm} 0.004$	0.487 ± 0.017	0.498 ± 0.004	0.494	$0.490 {\pm} 0.007$
	J _{sc} (mA/cm ²)	23.81±0.40	22.05±0.84	22.85±1.04	24.06	22.90±0.97
	FF (%)	45.97±3.13	60.80±3.80	51.70±2.22	52.13	52.82±6.83
	PCE (%)	5.29±0.23	6.61±0.69	5.88±0.36	6.19	5.93±0.71
THSC ₄₅	$V_{oc}(V)$	0.516 ± 0.010	0.511±0.004	0.507 ± 0.006	0.512	0.511 ± 0.006
	J _{sc} (mA/cm ²)	25.94±0.43	25.13±0.21	25.10±1.40	26.02	25.39±0.40
	FF (%)	62.03±3.12	64.04±1.49	58.23±4.37	62.51	61.43±2.39
	PCE (%)	8.30±0.43	8.25±0.20	7.43±0.94	8.33	7.99±0.34
THSC ₆₀	$V_{oc}(V)$	$0.528 {\pm} 0.002$	0.526 ± 0.002	0.524 ± 0.003	0.522	$0.526 {\pm} 0.003$
	J _{sc} (mA/cm ²)	25.07±1.91	25.34±0.71	28.35±0.65	28.75	26.25±1.33
	FF (%)	67.89±1.14	69.57±3.56	66.53±4.22	69.45	67.99±1.47
	PCE (%)	8.99±0.33	9.30±0.63	9.89±0.87	10.42	9.39±0.76

Figure S12. EQE spectra for HHSC prepared on 180 μ m, 50 μ m (THSC₀) untextured Si wafer; and 50 μ m textured (THSC₆₀).

(E) EIS (Electrochemical Impedance Spectroscopy)

Complex impedance

Resultant impedance of $R_{\rm p}$ and $C_{\rm p}$ is

$$\frac{1}{Z} = \frac{1}{R_p} + \frac{1}{\chi_p}$$
$$\Rightarrow \frac{1}{Z} = \frac{1}{R_p} + j\omega C_p$$
$$\Rightarrow Z = \frac{R_p}{1 + j\omega C_p R_p}$$

Realising it we get,

$$\Rightarrow Z = \frac{R_p}{1 + (\omega C_p R_p)^2} - j \frac{\omega C_p R_p^2}{1 + (\omega C_p R_p)^2}$$

Here we getting the real and imaginary part of resultant impedance. The imaginary impedance is in negative axis. Now. If series resistance is considered then we obtain

$$Z' = R_s + \frac{R_p}{1 + (\omega C_p R_p)^2} \quad \dots (i)$$
$$Z'' = \frac{\omega C_p R_p^2}{1 - \omega C_p R_p^2}$$

$$1 + (\omega C_p R_p)^2 \quad \dots \text{(ii)}$$

from equation (i), we get

$$Z' - R_{s} = \frac{R_{p}}{1 + \left(\frac{R_{p}}{\chi_{p}}\right)^{2}} = \frac{\chi_{p}^{2}R_{p}}{\chi_{p}^{2} + R_{p}^{2}} \dots (iii)$$

from equation (ii), we get

$$Z'' = \frac{R_p^2 \frac{1}{\chi_p}}{1 + \left(\frac{R_p}{\chi_p}\right)^2} = \frac{R_p^2 \chi_p}{\chi_p^2 + R_p^2} \qquad \dots \text{ (iv)}$$

Squaring and adding equation (iii) and (iv),

$$(Z' - R_S)^2 + (Z'')^2 = \frac{(\chi_p^2 R_p)^2 + (R_p^2 \chi_p)^2}{(\chi_p^2 + R_p^2)^2}$$
$$= \frac{\chi_p^2 R_p^2}{\chi_p^2 + R_p^2}$$
$$= R_p \frac{\chi_p^2 R_p}{\chi_p^2 + R_p^2}$$
$$= R_p (Z' - R_s)$$

Thus, we obtain

$$R_{p} = \frac{\left(Z' - R_{s}\right)^{2} + (Z'')^{2}}{\left(Z' - R_{s}\right)}$$

Similarly, we can find

$$\chi_p = \frac{\left(Z' - R_s\right)^2 + \left(Z''\right)^2}{Z''}$$
$$C_p = \frac{1}{\omega\chi_p} = \frac{1}{2\pi f\chi_p}$$

So,

 $C_{\rm p}\, {\rm is}\,$ fitted at such frequency where Z" has maximum value.