Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary materials

Application Convenient and Energy-saving Mechano-optics of Er³⁺-

doped X_2O_2S (X=Y/Lu/Gd) for thermometry

Yixiao Han, Leipeng Li*, Chongyang Cai, Pei Li, Tao Li, Xiumei Han, Dengfeng

Peng* and Yanmin Yang*

Dr. Y. Han, Dr. L. Li, Dr. C. Cai, Dr. P. Li, Dr. T. Li, Prof. Y. Yang

College of Physics Science and Technology, Hebei University, Baoding 071002,

China

E-mail: lpl@hbu.edu.cn (L. Li); yangym@hbu.edu.cn (Y. Yang)

Prof. D. Peng

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen

518060, China

E-mail: pengdengfeng@szu.edu.cn

Prof. X. Han

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,

Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

Figure S1. Practical experimental setup of ML measurement.

Figure S2. ML spectra of $Y_2O_2S:xEr^{3+}$ (*x*=1%, 2%, 3%, 4%, 5%, and 6%) under the same external force stimulation.

Figure S3. Practical experimental setup of ML measurement at different temperatures.

Figure S4. (a) Original and (b) normalized ML spectra of $Y_2O_2S:2\%Er^{3+}$ at different temperatures from 300 to 348 K.

Figure S5. (a) Original and (b) normalized ML spectra of $Y_2O_2S:2\%Er^{3+}$ phosphors under stimulation of different external force.

Figure S6. ML spectra of $Y_2O_2S:2\%Er^{3+}$ phosphors at 300 K and 348 K during the heating-cooling test.

Figure S7. XRD results of (a) $Gd_2O_2S:2\%Er^{3+}$ and (b) $Lu_2O_2S:2\%Er^{3+}$.

Figure S8. (a) Original and **(b)** normalized ML spectra of $Gd_2O_2S:2\%Er^{3+}$ at different temperatures from 300 to 348 K. **(c)** Original and **(d)** normalized ML spectra of $Lu_2O_2S:2\%Er^{3+}$ at different temperatures from 300 to 348 K.