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Supplementary Note S1 – Film characterization 
 

X-ray diffraction (XRD). XRD patterns of the phosphor and films were recorded using 

a SIEMENS diffractometer model D5000, Cu Kα radiation (λ = 1.4505 Å) within the 10–80° range 

(step of 0.02) at accelerating voltage of 30 kV and integration time of 0.1 s. The measurement 

was performed at room temperature (298 K). 

Thermogravimetric analysis (TGA). The analyses were carried using TA 

instruments equipment (model SDT Q600), from an approximate weight of 4 mg of each 

sample in an alumina crucible under purified nitrogen gas flux (15 mL min-1) and a 

heating rate of 10 °C/min from 25 °C to 1000 °C. 

 FTIR and Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) 

was recorded in a Perkin Elmer Frontier spectrometer through the diamond attenuated 

total reflection (ATR) mode within the 250 – 4000 cm-1 spectral range and increment of 

2 cm-1. Raman spectra at room temperature were measured using a 633 nm laser at a 

micro-Raman Renishaw spectrograph, in Via-model, equipped with a Leica optical 

microscope and CCD PELTIER detector. Also, the presence of a dichroic mirror situated 

in front of the spectrograph was set to reduce the transmitted excitation beam, which 

affects the intensity of the bands near the laser excitation wavelength (633 nm). 

 SEM. The scanning electron microscopy (SEM) was carried on a Hitachi model 

SU3800 scanning-electron microscope with a detector of secondary and backscattering 

electrons in a high vacuum and at a constant temperature. The films were previously 

coated with a thin gold layer by using a sputtering QUORUM, Q 150R ES model. 

 TEM. Transmission electron microscopy (TEM) was carried out in a JEOL model 

JEM-2100 equipped with an energy dispersive spectroscopy (EDS). The samples were 

dispersed in ethanol; the one drop of solution was dispersed in a carbon coated copper 

backing. The analysis was performed at room temperature (298 K) after drying samples. 

 Confocal microscopy. The confocal measurements of the films were done in a 

Nikon Confocal Microscope model C2/C2si with an advanced inverted microscope 

system (Eclipse Ti-E), at a magnification of ×20, by using a laser channel of 405 nm (DAPI 

channel). 
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 Diffuse reflectance spectroscopy. Diffuse reflectance spectra (DRS) in the UV-Vis 

region were accomplished by using a spectrometer Cary 500 Scan model. The optical 

band gap values were evaluated from the diffuse reflectance data straight from a 

graphic of  (𝛼𝛼ℎ𝜈𝜈)𝑛𝑛 versus the energy of the incident photon in eV (ℎ𝜈𝜈), where n has a 

value equal to 2 for direct gap transitions in SrY2O41. The ratio of the absorption (S) and 

the scattering (K) coefficients gives the α constant, calculated according to the Kubelka-

Munk’s approximation (equation S1)2,3, where R is the reflectance observed for different 

incident energies, and the optical bandgap value is obtained from the extrapolation of 

the curve to the zero-ordinate value. 

𝛼𝛼 =
𝐾𝐾
𝑆𝑆

=
(1 − 𝑅𝑅)2

2𝑅𝑅
  (𝑆𝑆1) 

 Refractive index determination. The correct value of refractive index is essential 

in determining the photophysical parameters of all samples. Under this circumstance, 

two approximations for calculating the refractive index were tested (equation S2 and 

equation S3). In approximation (1), 𝛼𝛼 is the absorption coefficient and 𝜆𝜆𝑒𝑒 is the 

absorption edge wavelength. In approximation (2), 𝐸𝐸𝑔𝑔 is the energy of the optical 

bandgap in eV. The obtained values were summarized in Table S1. 

𝑛𝑛 =  1 +
1

2𝜋𝜋2
�

𝛼𝛼

1 − � 𝜆𝜆𝜆𝜆𝑒𝑒
�
2 𝑑𝑑𝑑𝑑    (𝑆𝑆1) 

1 −
𝑛𝑛2 − 1
𝑛𝑛2 + 1

= �
𝐸𝐸𝑔𝑔
20�

1/2

  (𝑆𝑆2) 

Table S1. Values of refractive index determined by using each approximation. 

Film / % Approximation 1 Approximation 2 

40 1.506 1.564 

45 1.515 1.590 

50 1.528 1.612 

55 1.531 1.624 

60 1.539 1.631 

65 1.554 1.642 

70 1.568 1.671 
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 Among these results, we consider approximation 1 more well-suited for the 

photophysical analysis, as we have considered the wavelength while it was neglected in 

approximation 2. 

 Steady-state and time-resolved luminescence. Photoluminescence excitation 

and emission spectra at (298 K, excitation, and emission band pass of 0.5 nm) were 

performed in a Horiba Jobin Yvon spectrometer Fluorog model FL3–222 with a Xe lamp 

(450 W) source with a double excitation monochromator with the corrected intensity of 

the Xe lamp excitation, and the signal detection. Emission decay curves were carried out 

in a phosphorimeter equipped with a Xe (5 J/pulse) lamp at 298 K. Samples were placed 

in support for solids and the measurements were carried out in front face mode. 

 Experimental photophysical analysis. The experimental Judd-Ofelt intensity 

parameters were calculated from the emission spectrum measured at 298 K applying 

equations (S4) and (S5), where A is the Einstein coefficient of spontaneous emission. In 

equation (S4), the term I0-λ is the area under the curve related to the 5D0→7Fλ transition, 

ℎ𝜈𝜈0−𝜆𝜆 is the energetic barycenter of the 0–λ. In equation (S5), the squared reduced 

matrix elements � Fλ7 ��U(λ)�� D0
5 �

2
 assume values of 0.0032 for Ω2, and 0.0023 for Ω4 4, 

e is the electron charge, c is the speed of light, h and 𝜀𝜀0 are the Planck’s and vacuum 

permittivity constants, respectively. Also, 𝜒𝜒 is the Lorentz Local field correction, given by 

the expression 𝑛𝑛(𝑛𝑛 + 2)2/9 and n is the refractive index of the medium (𝑛𝑛 ≈ 1.488 

considering PMMA refractive index at the orange-red wavelength region), and 𝜔𝜔0−𝜆𝜆 is 

the angular frequency of the 5D0→7Fλ (λ = 2, 4) emission5. In this work, Ω6 was not 

considered since, in this model, it is derived from the 5D0→7F6, which is out of the 

sensibility range in the fluorimeter. 

𝐴𝐴0−𝜆𝜆 =
𝐼𝐼0−𝜆𝜆
𝐼𝐼0−1

ℎ𝜈𝜈0−1
ℎ𝜈𝜈0−𝜆𝜆

   (𝑆𝑆4) 

Ω𝜆𝜆
𝑒𝑒𝑒𝑒𝑒𝑒 =

3ℏ𝑐𝑐3𝐴𝐴0−𝜆𝜆
4𝑒𝑒2(𝜔𝜔0−𝜆𝜆)3𝜒𝜒� 𝐹𝐹𝜆𝜆7 ��𝑈𝑈(𝜆𝜆)�� 𝐷𝐷05 �

2   (𝑆𝑆5) 

 The emission decay curves were monitored for all films, and the 5D0 state lifetime 

was obtained with equation (S6), in which the parameters were extracted from a bi-

exponential fit to estimate the intrinsic quantum yield. This property is defined in 
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equation (S7) as the ratio between the radiative (Arad) and total contributions (radiative 

and non-radiative, Anrad), where the Arad is expressed in equation (S8) as a sum of each 

band component assigned to Eu3+ f-f transitions. Otherwise, the Anrad values were 

calculated using equation (S9), where the inverse of the weighted average experimental 
5D0 state lifetime is taken into account. Also, the branching ratio was calculated with the 

area of the band attributable to the 5D0→7F2 in the emission spectra, and the sum of the 

area of all bands related to the 5D0→7F2-4 transitions (equation S10). 

〈𝜏𝜏〉 =
∑𝐴𝐴𝑖𝑖𝜏𝜏𝑖𝑖2

∑𝐴𝐴𝑖𝑖𝜏𝜏𝑖𝑖
   (𝑆𝑆6) 

𝛷𝛷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
  (𝑆𝑆7) 

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 = �𝐴𝐴0−𝐽𝐽
𝐽𝐽

  (𝑆𝑆8) 

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
〈𝜏𝜏〉

= 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (𝑆𝑆9) 

𝛽𝛽𝑅𝑅(𝜓𝜓(0),𝜓𝜓(2)) =
𝐴𝐴(𝜓𝜓(0),𝜓𝜓(2))

∑ 𝐴𝐴(𝜓𝜓(0),𝜓𝜓𝜓𝜓′)𝐽𝐽′=0−4
  (𝑆𝑆10) 
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Supplementary Note S2 – Description of the tight-binding quantum-chemical model 
used in the composite optimization. 

 

The computational modeling of materials at an atomistic level is an essential tool 

in today science and has become a vital element in the research available nowadays6. In 

this sense, in the last years, key properties such as interactions and vibrational 

frequencies are in high demand7. However, for systems with more than 1000 atoms, the 

obtention of these features from ab-initio calculations is practically impossible, 

increasing the necessity of new methods that are able to treat large systems. Thus, in 

this section, we will highlight the important characteristics of the GFNn-xTB software, 

whose focus is the vibrational and noncovalent interactions. 

The GFNn-xTB consists of a minimal basis set of atoms centered, approximate 

Slater function as contractions of standard primitive Gaussian functions (STO-mG), 

augmented with a second d-polarization functions for heavy elements and s-function for 

hydrogen to enhance the accuracy of hydrogen bonding. Thus, the wavefunction choice 

in GFNn-xTB methods is described below in equation S11, where 𝜒𝜒𝑧𝑧
𝜇𝜇 is the primitive 

Gaussian type orbitals (GTOs) that contribute to the contracted GTO 𝜑𝜑𝜇𝜇, where 𝑑𝑑𝑧𝑧𝑧𝑧 are 

the corresponding contraction coefficients8. The useful 𝜑𝜑𝜇𝜇 is used in the expansion of 

the molecular orbitals through a linear combination with the orbital coefficient 𝐶𝐶𝜇𝜇𝜇𝜇 

(equation S12)9. The energies are found by the derivation of the expression as a function 

of the orbital coefficients, generating the Roothaan-Hall-type generalized eigenvalue 

equation S1310,11. Here, C is the matrix of orbital coefficients, ε is a diagonal matrix of 

orbital energies, S is the atomic orbital overlap matrix, and F is the xTB Hamiltonian 

matrix. 

𝜑𝜑𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟) ≈ 𝜑𝜑𝜇𝜇(𝑟𝑟) = � 𝑑𝑑𝑧𝑧𝑧𝑧𝜒𝜒𝑧𝑧
𝜇𝜇(𝑟𝑟)

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜇𝜇

𝑧𝑧

   (𝑆𝑆11) 

𝜓𝜓𝑗𝑗(𝑟𝑟) = �𝐶𝐶𝜇𝜇𝜇𝜇𝜑𝜑𝜇𝜇(𝑟𝑟)
𝑁𝑁𝐴𝐴𝐴𝐴

𝜇𝜇

  (𝑆𝑆12) 

𝐹𝐹𝐹𝐹 = 𝑆𝑆𝑆𝑆𝑆𝑆  (𝑆𝑆13) 
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 These wavefunctions may also be extended to comprise generalized periodic 

systems, where now 𝜓𝜓𝑗𝑗 corresponds to a crystal orbital with the Bloch function 

equivalent for the one-particle functions (equation S14) with the Born-von-Kármán 

cyclic boundary conditions 𝜓𝜓𝑗𝑗�𝑟𝑟 + 𝐿𝐿�⃗ ,𝑘𝑘�⃗ � = 𝜓𝜓𝑗𝑗�𝑟𝑟,𝑘𝑘�⃗ �9. The equation S14 can be expanded 

in the previous AOs, where the crystal orbitals are then expressed in equation S15, in 

which the summation relates over all NL cells, related by the translation vector 𝐿𝐿�⃗ . We 

highlight that xTB implements the cyclic cluster model (CCM), considering the nearest 

neighbors (𝑁𝑁𝐿𝐿 → 𝑁𝑁𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶) with the corresponding weights for the Bloch function 

expansion12. This model supposes the vanishing of interaction beyond Wigner-Seitz cell, 

enabling the re-writing of Roothan-Hall-type equations for the crystal orbitals (equation 

S16). 

𝜓𝜓𝑗𝑗�𝑟𝑟 + 𝐿𝐿�⃗ ,𝑘𝑘�⃗ � = 𝜓𝜓𝑗𝑗�𝑟𝑟,𝑘𝑘�⃗ �𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑘𝑘�⃗ 𝐿𝐿�⃗ �  (𝑆𝑆14) 

𝜓𝜓𝑗𝑗�𝑟𝑟, 𝑘𝑘�⃗ � = �𝐶𝐶𝜇𝜇𝜇𝜇�𝑘𝑘�⃗ �
1

�𝑁𝑁𝐿𝐿
�𝜙𝜙𝜇𝜇𝐿𝐿

�⃗ (𝑟𝑟)
𝑁𝑁𝐿𝐿

𝐿𝐿�⃗

𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑘𝑘�⃗ 𝐿𝐿�⃗ �
𝜇𝜇

  (𝑆𝑆15) 

� 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑘𝑘�⃗ 𝐿𝐿�⃗ ���𝐹𝐹𝜇𝜇𝜇𝜇0
��⃗ 𝐿𝐿�⃗ − 𝜀𝜀𝑗𝑗�𝑘𝑘�⃗ �𝑆𝑆𝜇𝜇𝜇𝜇0

��⃗ 𝐿𝐿�⃗ � 𝐶𝐶𝜇𝜇𝜇𝜇�𝑘𝑘�⃗ �𝑤𝑤𝜇𝜇𝜇𝜇
𝜇𝜇

= 0

𝑁𝑁𝐿𝐿
𝐶𝐶𝐶𝐶𝐶𝐶

𝐿𝐿�⃗ =0��⃗

  (𝑆𝑆16) 

 In equation S16, the 𝐹𝐹𝜇𝜇𝜇𝜇0
��⃗ 𝐿𝐿�⃗  term represents the element of the Hamiltonian matrix, 

𝜀𝜀𝑗𝑗�𝑘𝑘�⃗ � is the energy of the j-th crystal orbital, and the element of the overlap matrix is 

represented by 𝑆𝑆𝜇𝜇𝜇𝜇0
��⃗ 𝐿𝐿�⃗ . Here, all calculations run over the high-symmetry Γ point in the 

Brillouin zone12. Therefore, in our optimization of the composite we restricted the 

treatment of the 2×2×2 supercell using the periodic boundary model adopted in xTB, 

while the first 300 atoms around the supercell were treated under the localized model 

described before, and the rest of the system was described through a self-parametrized 

force-field.  

It is worth noting that the GFN2-xTB method13 is the first off-the-shelf tight-

binding method with multiple electrostatics, anisotropic exchange correlation (XC) 

contributions, and charge-dependent dispersion interactions (D4), where the total 

energy is described by equation S179, which was used to highlight the phosphor-polymer 
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interactions. In this equation, the superscript indicates the origin of the respective terms 

in the tight-binding expansion. The classical repulsion energy is denoted in equation S18, 

where Zeff is the element-specific constants defining the magnitude for the repulsion 

energy. The extended Hückel energy (EHT) is ascribed in equation S19 since typical tight-

binding methods allow the formation of covalent bond formation through EHT14, where 

the valence electron density matrix in the nonorthogonal atomic orbitals is 𝑃𝑃𝜇𝜇𝜇𝜇 = 𝑃𝑃𝜇𝜇𝜇𝜇0 +

𝛿𝛿𝑃𝑃𝜇𝜇𝜇𝜇, and the EHT matrix elements (𝐻𝐻𝜈𝜈𝜈𝜈𝐸𝐸𝐸𝐸𝐸𝐸) are detailed in equation S20. Here, 𝐾𝐾𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙′  is an 

element pair-specific scaling parameter, 𝑆𝑆𝜇𝜇𝜇𝜇 is the overlap matrix elements of the atomic 

orbitals 𝜙𝜙𝜇𝜇 and 𝜙𝜙𝜈𝜈, and the diagonal matrix elements are 𝐻𝐻𝜇𝜇𝜇𝜇 and 𝐻𝐻𝜈𝜈𝜈𝜈, which depends 

on the chemical environment. Also, the isotropic electrostatic and XC energy originate 

from the second-order term in the tight-binding expansion (equation S21)15,16,17,18 

where 𝑞𝑞𝑙𝑙/𝑞𝑞𝑙𝑙′ are partial Mulliken charges and 𝛾𝛾𝐴𝐴𝐴𝐴,𝑙𝑙𝑙𝑙′ are short-ranged damped Coulomb 

interactions (S22). 

𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺2−𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷4′ + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝛾𝛾 + 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐸𝐸𝛤𝛤𝐺𝐺𝐺𝐺𝐺𝐺2  (𝑆𝑆17) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 =
1
2
�

𝑍𝑍𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒𝑍𝑍𝐵𝐵

𝑒𝑒𝑒𝑒𝑒𝑒

𝑅𝑅𝐴𝐴𝐴𝐴
𝑒𝑒−√𝛼𝛼𝐴𝐴𝛼𝛼𝐵𝐵(𝑅𝑅𝐴𝐴𝐴𝐴)𝑘𝑘𝑘𝑘

𝐴𝐴,𝐵𝐵

  (𝑆𝑆18) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �𝑃𝑃𝜇𝜇𝜇𝜇𝐻𝐻𝜈𝜈𝜈𝜈𝐸𝐸𝐸𝐸𝐸𝐸
𝜇𝜇𝜇𝜇

  (𝑆𝑆19) 

𝐻𝐻𝜈𝜈𝜈𝜈𝐸𝐸𝐸𝐸𝐸𝐸 =
1
2
𝐾𝐾𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙′𝑆𝑆𝜇𝜇𝜇𝜇�𝐻𝐻𝜇𝜇𝜇𝜇 + 𝐻𝐻𝜈𝜈𝜈𝜈�𝑋𝑋(𝐸𝐸𝑁𝑁𝐴𝐴,𝐸𝐸𝐸𝐸𝐵𝐵)𝛱𝛱(𝑅𝑅𝐴𝐴𝐴𝐴, 𝑙𝑙, 𝑙𝑙′)𝑌𝑌(𝜁𝜁𝑙𝑙𝐴𝐴, 𝜁𝜁𝑙𝑙′𝐵𝐵)  (𝑆𝑆20) 

𝐸𝐸𝛾𝛾 =
1
2

� ��𝑞𝑞𝑙𝑙𝑞𝑞𝑙𝑙′𝛾𝛾𝐴𝐴𝐴𝐴,𝑙𝑙𝑙𝑙′
𝑙𝑙′∈𝐵𝐵𝑙𝑙∈𝐴𝐴

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐴𝐴,𝐵𝐵

  (𝑆𝑆21) 

𝛾𝛾𝐴𝐴𝐴𝐴,𝑙𝑙𝑙𝑙′ =
1

�𝑅𝑅𝐴𝐴𝐴𝐴2 + 𝜂𝜂𝐴𝐴𝐴𝐴,𝑙𝑙𝑙𝑙′
−2

  (𝑆𝑆22) 

 In the used GFN2-xTB, the shell-exponent term, included in the description of the 

extended-Hückel model (EHT) is in detail in equation S23, where 𝜁𝜁𝑙𝑙𝐴𝐴 are the Slater-type-

orbitals (STO)8 exponents of the GFN2-xTB atomic orbital basis. However, the EHT 

diagonal matrix elements are atomic environment-dependent (equation S24), in which 

ℎ𝐴𝐴𝑙𝑙  is a shell- and element-specific parameter. 



9 
 

𝑌𝑌(𝜁𝜁𝑙𝑙𝐴𝐴, 𝜁𝜁𝑙𝑙′𝐵𝐵) = �
2�𝜁𝜁𝑙𝑙𝐴𝐴, 𝜁𝜁𝑙𝑙′𝐵𝐵

𝜁𝜁𝑙𝑙𝐴𝐴 + 𝜁𝜁𝑙𝑙′𝐵𝐵
�

1
2

  (𝑆𝑆23) 

𝐻𝐻𝜅𝜅𝜅𝜅 = ℎ𝐴𝐴𝑙𝑙 − 𝛿𝛿ℎ𝐶𝐶𝑁𝑁𝐴𝐴′
𝑙𝑙 𝐶𝐶𝑁𝑁𝐴𝐴′   (𝑆𝑆24) 

 Also, the dispersion energy denoted in equation S17 here is described by a 

modified model19, detailed in equation S25, in which the three-body Axilrod-Teller-Muto 

(ATM) term is in the second line, while the third line describes the dependence of the 

two-body London dispersion energy, and the covalent coordination number 𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴  with 

the atomic charges 𝑞𝑞𝐴𝐴. 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷4′ = −� � 𝑠𝑠𝑛𝑛
𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴(𝑞𝑞𝐴𝐴,𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 , 𝑞𝑞𝐵𝐵,𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵 )

𝑅𝑅𝐴𝐴𝐴𝐴𝑛𝑛
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵𝐵𝐵

(𝑛𝑛) (𝑅𝑅𝐴𝐴𝐴𝐴)
𝑛𝑛=6,8𝐴𝐴>𝐵𝐵

− 𝑠𝑠9 �
(3 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶) + 1)𝐶𝐶9𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 ,𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵 ,𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 )

(𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐵𝐵𝐵𝐵)3
𝐴𝐴>𝐵𝐵>𝐶𝐶

× 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
(9) (𝑅𝑅𝐴𝐴𝐴𝐴,𝑅𝑅𝐴𝐴𝐴𝐴 ,𝑅𝑅𝐵𝐵𝐵𝐵)  (𝑆𝑆25) 

 The anisotropic electrostatic and exchange correlation (XC) terms are written in 

the equation S26, where 𝜇𝜇𝐴𝐴 is the cumulative atomic dipole moment of atom A and the 

corresponding traceless of the quadrupole moment is Θ𝐴𝐴 19F

20. Finally, the second-order 

anisotropic XC energy is given by equation S27 in the case of GFN2-xTB. 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 =
1
2
�{𝑓𝑓3(𝑅𝑅𝐴𝐴𝐴𝐴)[𝑞𝑞𝐴𝐴(𝜇𝜇𝐵𝐵𝑇𝑇𝑅𝑅𝐵𝐵𝐵𝐵) + 𝑞𝑞𝐵𝐵(𝜇𝜇𝐴𝐴𝑇𝑇𝑅𝑅𝐴𝐴𝐴𝐴)]
𝐴𝐴,𝐵𝐵

+ 𝑓𝑓5(𝑅𝑅𝐴𝐴𝐴𝐴)[𝑞𝑞𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑇𝑇 𝛩𝛩𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 + 𝑞𝑞𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴𝑇𝑇 𝛩𝛩𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴 − 3(𝜇𝜇𝐴𝐴𝑇𝑇𝑅𝑅𝐴𝐴𝐴𝐴)(𝜇𝜇𝐵𝐵𝑇𝑇𝑅𝑅𝐴𝐴𝐴𝐴)

+ (𝜇𝜇𝐴𝐴𝑇𝑇𝜇𝜇𝐵𝐵)𝑅𝑅𝐴𝐴𝐴𝐴2 ]}   (𝑆𝑆26) 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = ��𝑓𝑓𝑋𝑋𝑋𝑋
𝜇𝜇𝐴𝐴|𝜇𝜇𝐴𝐴|2 + 𝑓𝑓𝑋𝑋𝑋𝑋

𝛩𝛩𝐴𝐴‖𝛩𝛩𝐴𝐴‖2�
𝐴𝐴

  (𝑆𝑆27) 

 The lanthanides in this model were treated under the f-in-core approximation, 

in which they are treated as 4d transition metals with three valence electrons and no 

explicit consideration of the f-electrons. Previous ab initio calculation reported in the 

literature indicates that the f-electron shell lies below the valence shell, and they can be 

treated with an appropriate parametrization (GFN-xTB)21, unless spectroscopic 
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properties are required, which is not the case here, since only structural and interaction 

properties are of interest. 

Supplementary Note S3 – Procedure for the theoretical calculation of the Judd-Ofelt 
Intensity Parameters and the Force Constants 

 

The calculation of the theoretical intensity parameter of lanthanides is quite 

common in the literature22, however, this is the first time that they were applied to a 

phosphor/PMMA film. Therefore, in this section, we introduce important aspects of the 

formalism and adaptations proposed by us to perform an accurate calculation. 

 At first, we denote that these parameters are highly dependent on the chemical 

environment and the rare-earth ion, where the overall environment-dependent 

parameters Bλtp is a sum of the forced electric dipole (FED) and dynamic coupling (DC) 

contributions �𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐷𝐷𝐷𝐷 �, as detailed in equation S28, S29 and S30.  

𝛺𝛺𝜆𝜆𝑡𝑡ℎ𝑒𝑒𝑒𝑒 = (2𝜆𝜆 + 1)�
�𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆�

2

2𝑡𝑡 + 1
𝑡𝑡,𝑝𝑝

,  𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆 = 𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐷𝐷𝐷𝐷   (𝑆𝑆28) 

𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹 =
2
𝛥𝛥𝛥𝛥

〈𝑟𝑟𝑡𝑡+1〉𝛩𝛩(𝑡𝑡, 𝜆𝜆) �
4𝜋𝜋

2𝑡𝑡 + 1�
1/2

��𝑒𝑒2𝜌𝜌𝑗𝑗𝑔𝑔𝑗𝑗�2𝛽𝛽𝑗𝑗�
𝑡𝑡+1

𝑗𝑗

𝑌𝑌𝑝𝑝,𝑗𝑗
𝑡𝑡∗

𝑅𝑅𝑗𝑗𝑡𝑡+1
�   (S29) 

𝐵𝐵𝜆𝜆𝜆𝜆𝜆𝜆𝐷𝐷𝐷𝐷 = −�
(𝜆𝜆 + 1)(2𝜆𝜆 + 3)

(2𝜆𝜆 + 1) �
1/2

〈𝑟𝑟𝜆𝜆〉�3��𝐶𝐶(𝜆𝜆)��3� �
4𝜋𝜋

2𝑡𝑡 + 1�
1/2

× ����2𝐵𝐵𝑗𝑗�
𝑡𝑡+1𝛼𝛼𝑂𝑂𝑂𝑂,𝑗𝑗 + 𝛼𝛼𝑗𝑗′�

𝑗𝑗

𝑌𝑌𝑝𝑝,𝑗𝑗
𝑡𝑡∗

𝑅𝑅𝑗𝑗𝑡𝑡+1
�𝛿𝛿𝑡𝑡,𝜆𝜆+1  (𝑆𝑆30) 

Equation (S29) represents the contribution from the forced electric dipole (FED) 

through an adaptation of the original Judd-Ofelt theory by considering the charge factor 

(g) on the basis of the simple overlap model (SOM)23. Equation (S30) exhibits the 

expression for the dynamic coupling contribution (DC) within the scope of the bond 

overlap model (BOM)24. We emphasize that both models consider the covalency effects. 

In equation S29, ΔE is the energy difference between the barycenter of the excited 4fn-

15d1 and ground 4fn configurations, Θ(𝑡𝑡, 𝜆𝜆) are the numerical factors, defined as the 

relation between f-g and f-d interconfigurational transitions and 4f radial integrals, with 
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values of Θ(1,2) = –0.17,  Θ(3,2) = 0.34, Θ(3,4) = 0.18, Θ(5,4) = –0.24, Θ(5,6) = –0.24, and 

Θ(7,6) = 0.2425. Also, g is the charge factor (equation S31), that combined with the 

overlap integral (ρ), composes the overlap charge between the Ln–L. The value of β 

parameter is given by (1 ± 𝜌𝜌)−1, whereas 𝑌𝑌𝑝𝑝𝑡𝑡∗ is the conjugated spherical harmonics for 

l = 3, where the environment around the Ln3+ is treated by the sum over the j-th atom. 

The ligand polarizability is described in terms of the bond overlap polarizability and 

effective polarizability (𝛼𝛼𝑂𝑂𝑂𝑂 and 𝛼𝛼′, respectively). The first is commonly used to describe 

the covalency degree (equation S32), while the latter defines a specific molecular region 

that influences directly or indirectly the chemical environment of the lanthanide24. 

𝑔𝑔𝑗𝑗 = 𝑅𝑅𝑗𝑗�
𝑘𝑘𝑗𝑗

2∆𝜀𝜀𝑗𝑗
  (𝑆𝑆31) 

𝛼𝛼𝑂𝑂𝑂𝑂 =
𝑒𝑒2𝜌𝜌𝑗𝑗2𝑅𝑅𝑗𝑗2

2∆𝜀𝜀𝑗𝑗
  (𝑆𝑆32) 

In our study, the effective polarizability of the j-th ligand (𝛼𝛼𝑗𝑗′) was determined 

through the fitting procedure in the JoySpectra platform26 to minimize the residue 

between the experimental and theoretical parameters, and more information of the 

fitting method is described in reference 26. Furthermore, the bond overlap polarizability 

was calculated extracting 𝜌𝜌𝑗𝑗 and ∆𝜀𝜀𝑗𝑗 from reference 27 using an exponential fit.  

Regarding the calculation of the charge factors, the same values of ∆𝜀𝜀𝑗𝑗 used in 

the  𝛼𝛼𝑂𝑂𝑂𝑂 can be applied, and as a consequence, only the 𝑘𝑘𝑗𝑗 needs to be determined. For 

this purpose, previous work available in the literature reports a pseudo diatomic-like 

model24 and local vibrational mode theory (LMV)25 to calculate the 𝑘𝑘𝑗𝑗 force constants 

(and corresponding g). However, these methods require ab-initio calculations or DFT-

level computations to obtain the average weighted hessian matrix, which is impossible 

in our system due to the number of atoms and the long-range interactions between the 

Ln and the ligands in a first coordination sphere. Thus, the method we employed is 

detailed in the following. 

In the case of a Ln3+ complex with monodentate organic ligands such as 

triphenylphosphine oxide, there is a direct effect of the bond stretch in the energy, since 

it is possible to check the energy variation while stretching the Ln–L bond 22. Regarding 
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our study, the matter is more complicated for being an inorganic matrix, since the 

displacement of any ligand in a solid generates deviations in both Ln–L bond lengths of 

other bonds of the displaced ion, contributing effectively to the obtained k. For instance, 

in a LnO6 environment, stretching or bending the Ln–O(1) deviates the length and angle 

of Ln–O(2). In this study, this drawback was solved by letting the ligand atoms 

unchanged while the Eu3+ was freely displaced. Therefore, we have used the derivation 

proposed in reference 28, highlighted in the equations S31, S32 and S33, where 𝛼𝛼𝑖𝑖𝑖𝑖 are 

the angles between the vectors considering the i-th and j-th ligands and Fi, Fj is the force 

along these ligands, respectively. We emphasize that Fj→0 when using an optimized 

geometry, thus, no deformation of the bonds is present, causing the vanish of the first 

term of the right-hand side of equation S33, stemming equation S35 from the 

combination of S33 and S34.  

𝑘𝑘𝑖𝑖
𝑒𝑒𝑒𝑒 = −��𝐹𝐹𝑗𝑗

𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖

+
𝑑𝑑𝐹𝐹𝑗𝑗
𝑑𝑑𝑥𝑥𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖𝑖𝑖�
𝑁𝑁

𝑗𝑗=1

   (𝑆𝑆33) 

𝑑𝑑𝐹𝐹𝑗𝑗
𝑑𝑑𝑥𝑥𝑖𝑖

=
𝑑𝑑𝐹𝐹𝑗𝑗
𝑑𝑑𝑥𝑥𝑗𝑗

𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑥𝑥𝑖𝑖

= −𝑘𝑘𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖𝑖𝑖   (𝑆𝑆34) 

𝑘𝑘𝑖𝑖
𝑒𝑒𝑒𝑒 = �𝑘𝑘𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

   (𝑆𝑆35) 

 Employing the method of the equivalent bonds28, we obtain the k values solving 

equation S35, where the 𝑘𝑘𝑖𝑖
𝑒𝑒𝑒𝑒 was found as described in the sequence and 𝛼𝛼𝑖𝑖𝑖𝑖 was 

obtained through the calculation detailed in the supplementary note S2. The main 

difference of this work compared to the reported in reference [28] is assigned to the 

effect of the non-bonding atoms upon the supercell, and the extraction of the force 

constants from the Hellmann-Feynman theorem, instead of a routine mass-weighted 

hessian calculation. This adaptation opens new possibilities to a quick and low-cost 

computational procedure to calculate the effective constants since Hellmann-Feynman 

theorem is available at different source codes, such as MultiWFN29. In this sense, the 

proposed modifications are graphically highlighted in Fig S1. 
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Fig S1. Schematic representative diagram for (a) the effective force constants of Ln3+ ion displacement in 
a six-coordinated site in a solid emphasizing the α14 angle, and (b) effective force constants emphasizing 
the β14 angle considering the non-bonding interaction of an atom A with the Ln (green dashed line) and 
with the ligand (red dashed line). Item (a) was adapted from reference 28. 

The used parameters for the calculation described in the supplementary note S2 

are summarized as follows. The bond overlap polarizability used for the calculations is 

listed in Table S2, the charge factors in Table S3, and the effective polarizability in Table 

S4. 

Table S2. Calculated bond overlap polarizability values 

Eu–O bond Bond overlap polarizability (𝜶𝜶𝑶𝑶𝑶𝑶) / × 10-26 cm2 
Eu–O(1) 4.395 
Eu–O(2) 4.732 
Eu–O(3) 4.395 
Eu–O(4) 4.056 
Eu–O(5) 4.056 
Eu–O(6) 4.731 

 

Table S3. Calculated charge factors (𝑔𝑔𝑗𝑗) 

Film / % Charge factor (𝒈𝒈𝒋𝒋) 
O(1) O(2) O(3) O(4) O(5) O(6) 

40 0.193 0.099 0.069 0.756 0.588 0.049 
45 0.831 0.603 0.923 0.904 0.834 0.719 
50 0.865 0.507 1.058 0.831 0.860 0.601 
55 0.882 0.765 0.992 0.893 0.892 0.820 
60 0.998 0.610 0.831 0.776 0.952 0.814 
65 0.869 0.496 1.059 0.765 1.070 0.565 
70 1.059 0.648 1.066 0.925 0.993 0.867 

 

Table S4. Calculated effective polarizability from the fitting procedure (𝜶𝜶′) 

L(1)

L(4)
L(3)

L(2)

Ln
L(1)

L(4)

L(3)

L(2)

Ln

A

A

A B
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Film / % Effective polarizability (𝜶𝜶′) / Å3 
O(1) O(2) O(3) O(4) O(5) O(6) 

40 0.093 0.059 0.082 1.022 1.611 0.122 
45 1.585 0.606 1.721 1.813 1.574 0.472 
50 1.779 0.504 1.611 1.661 1.836 0.416 
55 1.778 0.625 1.602 1.637 1.772 0.532 
60 1.490 0.596 1.855 1.735 1.617 0.463 
65 1.847 0.751 1.407 1.476 1.680 0.419 
70 1.694 0.688 1.500 2.261 1.655 0.511 

 

Force Constant Calculation using Hellmann-Feynman theorem 

The calculation of the force constant was performed considering Eu–O bond as 

a diatomic-like molecule, under the influence of the indirect interaction of Eu3+ with the 

polymer matrix atoms. The forces were determined through the Hellmann-Feynman 

theorem within the adiabatic approximation, where the electrons follow the motion of 

atoms. Thus, the eigenvectors and eigenvalues {|𝛹𝛹𝑛𝑛⟩ and En, respectively} are obtained 

as a consequence of the diagonalization of the Hamiltonian matrix30. The Hellmann-

Feynman theorem states that if 𝜓𝜓𝜆𝜆 is a wavefunction of a Hamiltonian that depends on 

some parameter λ, that in this case is the stretching, and E is the eigenvalue of the 

Hamiltonian, then the derivative of the total energy with respect to the parameter 

relates with the expectation value of the derivative of the Hamiltonian with respect to 

the same parameter (equation S36). A derivation of the theorem is found in detail 

elsewhere31. For a fixed nuclear configuration under the Born-Oppenheimer 

approximation, the Schrödinger equation is rewritten in the form of equation S37, 

where the Hamiltonian is defined in expression S38. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ⟨𝜓𝜓𝜆𝜆|𝐻𝐻|𝜓𝜓𝜆𝜆⟩   (𝑆𝑆36) 

𝐻𝐻�𝜓𝜓𝑒𝑒 = �𝑇𝑇𝑒𝑒� + 𝑣𝑣��𝜓𝜓𝑒𝑒  (𝑆𝑆37) 

𝐻𝐻 = 𝑇𝑇𝑒𝑒� + 𝑉𝑉�𝑒𝑒𝑒𝑒 + ��
𝑍𝑍𝛼𝛼𝑍𝑍𝛽𝛽

�𝑅𝑅𝛼𝛼 − 𝑅𝑅𝛽𝛽�

𝑀𝑀

𝛽𝛽>𝛼𝛼

−��
𝑍𝑍𝛼𝛼

|𝑟𝑟𝑖𝑖 − 𝑅𝑅𝛼𝛼|

𝑀𝑀

𝛼𝛼=1

𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝛼𝛼=1

  (S38) 

 In this case we emphasize the ionic part of the bonding since the Eu–O bonds 

possess a predominant ionic nature. Thus, considering a diatomic type, the x-component 

of the force acting on the nucleus (δ) is defined in equation S39, where the 

differentiation of the Hamiltonian considering normalized electronic wavefunction 
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results in equation S40. Although, including the covalency effects (with the spectral 

overlap) and the internuclear distances between Eu and O atoms, equation S41 is 

written, which its derivation can be found elsewhereError! Bookmark not defined.. This form can 

be rewritten in the trigonometrical form model, allowing us to deal only with the bond 

angles (equation S42). 

𝐹𝐹𝑋𝑋𝑋𝑋 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝛿𝛿

= − �𝜓𝜓𝑒𝑒�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝛿𝛿

�𝜓𝜓𝑒𝑒�   (𝑆𝑆39) 

𝐹𝐹𝑋𝑋𝑋𝑋 = − �𝜓𝜓𝑒𝑒�∑
𝑥𝑥𝑖𝑖 − 𝑋𝑋𝛿𝛿

|𝑟𝑟𝑖𝑖 − 𝑅𝑅𝛿𝛿|3
𝑁𝑁
𝑖𝑖=1 �𝜓𝜓𝑒𝑒� + 𝑍𝑍𝛿𝛿 � 𝑍𝑍𝛼𝛼

𝑋𝑋𝛼𝛼 − 𝑋𝑋𝛿𝛿
|𝑅𝑅𝛼𝛼 − 𝑅𝑅𝛿𝛿|3

𝑀𝑀

𝛼𝛼≠𝛿𝛿

  (𝑆𝑆40) 

𝐹𝐹𝐴𝐴𝐴𝐴 = −𝑍𝑍𝐴𝐴 ��𝜌𝜌
𝑥𝑥𝑖𝑖 − 𝑋𝑋𝐴𝐴

|𝑟𝑟𝑖𝑖 − 𝑟𝑟𝐴𝐴|3 𝑑𝑑𝑟𝑟𝑖𝑖 −
𝑍𝑍𝐵𝐵(𝑋𝑋𝐵𝐵 − 𝑋𝑋𝐴𝐴)
|𝑅𝑅𝐵𝐵 − 𝑅𝑅𝐴𝐴|3 � = −𝑍𝑍𝐴𝐴 ��𝜌𝜌

𝑥𝑥𝑖𝑖 − 𝑋𝑋𝐴𝐴
𝑟𝑟𝐴𝐴𝐴𝐴3

𝑑𝑑𝑑𝑑𝑖𝑖 −
𝑍𝑍𝐵𝐵
𝑅𝑅2�

  (𝑆𝑆41) 

𝐹𝐹𝐴𝐴𝐴𝐴 = −𝑍𝑍𝐴𝐴 �𝜌𝜌
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐴𝐴𝐴𝐴
𝑟𝑟𝐴𝐴𝐴𝐴2

𝑑𝑑𝑑𝑑𝑖𝑖 +
𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵
𝑅𝑅2

   (𝑆𝑆42) 

 The forces were directly used to determine the 𝑘𝑘𝑖𝑖
𝑒𝑒𝑒𝑒from the variation of the force 

acting on the j-th ligand altering the i-th ligand position, then, the effective force 

constant was used to obtain the overall 𝑘𝑘𝑗𝑗 as described before in equation S35. 
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Supplementary Note S4 – Thermogravimetry and Derivative Thermogravimetry (TG 
and DTG) 

 
Fig S2. (a) TG curves for all films highlighting the three degradation steps (I), (II) and (III) at a 25 – 600 °C 
range and (b) DTG curves of all films 

Table S5. Temperature range related to the peaks (I), (II), and (III) considering each process for all films, 
and the residue of each decomposition. 

Film Temperature range / °C Weight loss / % Residue / % 
(I) (II) (III) (I) (II) (III) 

40% 148 – 216 259 – 309 322 – 421 5.84 15.5 73.7 38.7 
45% 149 – 221 260 – 306 322 – 421 5.34 17.3 76.7 44.9 
50% 150 – 219 263 – 309 325 – 422 3.41 14.0 73.2 48.9 
55% 153 – 224 260 – 301 329 – 421 2.61 14.0 80.2 53.6 
60% 152 – 218 264 – 304 324 – 422 3.40 12.8 80.6 61.2 
65% 153 – 221 262 – 303 326 – 425 3.24 12.4 81.2 65.2 
70% 154 – 218 264 – 301 329 – 426 3.05 12.1 81.7 69.6 
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Supplementary Note S5 – Morphological properties 
 

 
 Fig S3. (a) TEM (200 nm scale) image and HRTEM (high resolution TEM) with magnification at 10 nm image 
of the SrY2O4:CeIII/IV(2%),EuIII(9%) phosphor. (b) Mean particle size histogram considering the analysis of a 
sample of 209 particles in five TEM images.  

A

B
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Fig S4. SEM images displaying the secondary electrons (SE) of the 40%-phosphor/film at (a) 100X 
magnification (b) 3000X magnification, and the 65%-phosphor/film at (c) 100X magnification, and (d) 
3000X magnification. Images obtained by confocal microscopy of the (e) 40%-phosphor/film and (f) 65%-
phosphor/film.  
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Supplementary note S6 – Structural analysis of the film 
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Fig S5. Full FTIR spectra at 250 – 4000 cm-1 range of all films 

Table S6. Observed bands (cm-1) in the IR spectra for all films and their assignments. 

40% 45% 50% 55% 60% 65% 70% Assignment 

321 325 329 331 331 332 334 ν(RE–O) 

461 465 466 468 470 471 474 ν(RE–O) 

604 602 608 608 612 609 612 ν(RE–O) 

749 749 754 750 750 749 754 ν(αCH3) 

988 984 992 990 993 992 992 δ(C–H) 

1061 1061 1069 1069 1073 1073 1065 ν(C–O–C) 

1245 1246 1242 1247 1241 1246 1248 δ(O–H) 

1444 1442 1442 1440 1441 1436 1436 ν(O–CH3) 

1485 1486 1485 1489 1484 1481 1485 δ(C–H) 

1727 1726 1729 1727 1725 1728 1727 ν(C=O) 

2913 2919 2922 2928 2931 2937 2941 ν(CH2–) 

2998 2998 3002 3006 2999 3008 3012 ν(CH3) 

3396 3395 3398 3392 3396 3397 3399 ν(O–H) 
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Table S7. Observed bands (cm-1) in Raman scattering spectra for all films and their assignments. 

40% 45% 50% 55% 60% 65% 70% Vibrational mode Assignment 

306 309 310 312 315 312 315 B2g(4) M–O (M=Y3+,Sr2+) 

430 428 431 429 430 432 431 A2g(11) M–O (M=Y3+,Sr2+) 

482 484 488 490 489 485 488 A2g(13) M–O (M=Y3+,Sr2+) 

604 602 602 602 600 602 602 Symmetric stretching ν(C–CO) 

709 709 707 711 711 712 713 – Eu3+ (5D0→7F3) 

813 813 812 813 813 812 813 Rocking –CH2 

998 1001 1002 1005 999 1002 1000 Rocking O–CH3 

1259 1262 1263 1264 1264 1262 1262 Antisymmetric stretching ν(C–O) 

1454 1449 1452 1452 1447 1447 1452 Bending δ(O–CH3) 

1660 1658 1662 1661 1660 1663 1661 Symmetric stretch ν(C=C) 

1701 1701 1701 1702 1702 1701 1071 – Eu3+ (5D0→7F4) 

1766 1768 1766 1767 1767 1767 1766 Symmetric stretch ν(C=O) 

 

 

Fig S6. (a) FTIR spectrum of the 55% phosphor-film compared to the SrY2O4:CeIII/IV(2%),EuIII(9%) phosphor 
and the simulated FTIR of PMMA monomer using the ωB97x-3c/Def2-TZVP method, and (b) Raman 
spectrum of the 55% phosphor-film compared to the phosphor. 

B
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Fig S7. Powder X-ray diffraction patterns of the 55% phosphor-film compared to the 
SrY2O4:CeIII/IV(2%),EuIII(9%) phosphor, where the Miller indices peaks are indexed to the JCPDS 32-1272 
pattern. The halo ranging from 10 – 20 ° is assigned to the amorphous PMMA matrix, while the small peak 
in the 25° region is attributed to the tape used to hold the film in the sample holder of the equipment. 
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Supplementary note S7 – Optical bandgap 
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Fig S8. Amplified diffuse reflectance for the 60% phosphor/film composite highlighting the EuIII f-f 
transitions. 

 The experimental optical bandgap of the bulk phosphor (Fig S6a) was calculated 

considering that the levels close to 3.5 eV are related to structural defects, as 

consequences of the LnIII-dopants in the crystal. On the other hand, the optical bandgap 

of the undoped PMMA film was determined according to reference [32], in which the 

first band is assigned to the Urbach tail effects below 4 eV, and intra-band transitions 

below 4.5 eV.  

2 3 4 5 6

αh
ν2

Energy / eV

3.65 eV

Bulk phosphor

 

Fig S9. Bandgap determination from the DRS considering a direct transition in the bulk SrY2O4:CeIII/IV,EuIII 
phosphor. 
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Fig S10. Bandgap calculation considering direct transition for the (a) undoped film, (b) 40/60% 
phosphor/PMMA, (c) 45/55% phosphor/PMMA, (d) 50/50% phosphor/PMMA, (e) 55/45% 
phosphor/PMMA, (f) 60/40% phosphor/PMMA, (g) 65/35 phosphor/PMMA and (h) 70/30% 
phosphor/PMMA. 
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Table S8. Optical band gap values for each film. 

Film (phosphor/PMMA) % Optical band gap / eV 
Bulk phosphor 3.65 
Undoped film 4.59 

40/60 4.34 
45/55 4.19 
50/50 3.87 
55/45 3.76 
60/40 3.71 
65/35 3.66 
70/30 3.64 

 

 It is noteworthy that the particle size distribution (Fig S3b) yielded average values 

(56.4 nm) shorter than the wavelength range where the diffuse reflectance spectra was 

measured (200 – 800 nm), therefore, according to Rayleigh scattering theory, smaller 

wavelengths are much scattered than longer wavelengths. As the particle size increases 

(Fig S3b), higher intensities are found for the scattering, as a consequence of 

augmenting the volume as shown in equation S43, leading to lower transmittance in the 

UV region.33 The fluctuation in the transmittance values can affect the measured 

bandgap, however, the desired agreement between the theoretical electronic bandgap 

and optical bandgap of the bulk phosphor and films implies the considerable consistence 

of the approach. In this equation, k is a proportional constant, V is the volume of the 

particle, n is the refractive index and 𝝋𝝋 is the scattering angle at position distance R.  

𝐼𝐼𝑠𝑠
𝐼𝐼0

= �
𝑘𝑘𝑖𝑖
𝑛𝑛0
�
4

𝑉𝑉2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

16𝜋𝜋2𝑅𝑅2
[𝑛𝑛2 − 𝑛𝑛02]2  (𝑆𝑆43) 
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Supplementary Note S8 – Results of the composite theoretical structural analysis 
 

The calculation yielded the main phosphor-polymer interface, which coincides 

with the (0 0 1) lattice plane, as presented in Figure S8. Also, the optimization results are 

summarized in Table S8, and S9 – S16, where the first describes the number of 

neighbours and the nearest polymer groups of each europium atom in the supercell. 

The values in Table S9 – S16 are related to all bonds in the simulated composite, thus, 

C–H bonds refers to all the C–H in each functional group of the polymer. The same is 

seen for O–C and C–C. In the case of Metal–Oxygen bonds, only the first coordination 

sphere is considered, therefore, Eu–O, Ce–O, and Y–O describes only the bond length of 

the hexa-coordinated polyhedral, while Sr–O describes the bond length of the octa-

coordinated polyhedral. For comparison purposes, the Metal-Metal distances do not 

characterize effective bonds, they are kept in the table in angstrom and with the same 

notation. 

Table S9. Number of neighbours and nearest polymer groups of each europium atom in the supercell for 
the 55% phosphor/film. 

Atomx (x = site) Number of neighbors Nearest polymer group 
Eu1 14 Ester 
Eu2 11 Methyl 
Eu3 11 Methyl 
Eu4 9 Tert-buthyl 
Eu5 14 Ester 
Eu6 11 Tert-buthyl 
Eu7 11 Methyl 
Eu8 9 Ester 
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Fig S11. Position of the (0 0 1) lattice plane related to the phosphor-polymer interface. The most distant 
EuIII atoms of the plane are considered as being in the “internal region” while the closest to the plane are 
considered as being in the interface. 

Table S10. Distance between atoms with its minimum, average and maximum value in angstrom for the 
40% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0815 1.0955 1.1775 
C–C 1.5090 1.5454 1.5920 
O–C 1.2093 1.3262 1.5486 
Sr–H 2.1082 2.4628 2.7785 
Sr–C 2.6873 3.0008 3.4099 
Sr–O 1.9309 2.3630 3.2899 
Sr–Sr 3.3599 3.9762 4.8151 
Y–H 2.5110 2.5736 2.6363 
Y–O 1.7991 2.1210 2.6327 
Y–Sr 3.2172 3.9441 4.7494 
Y–Y 3.3574 3.8599 4.5069 

Ce–O 1.8806 2.2237 3.1955 
Ce–Sr 3.2747 4.0028 4.8543 
Ce–Y 3.2410 3.9262 4.5801 

Ce–Ce 3.4097 3.5096 3.5737 
Eu–O 2.2185 2.4268 2.6283 
Eu–Sr 3.3424 3.9271 4.8281 
Eu–Y 3.4150 4.0764 4.5869 

Eu–Ce 3.9434 4.4997 4.6795 
Eu–Eu 3.3650 3.5587 3.9705 

 

 

 

YIII

SrII
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Table S11. Distance between atoms with its minimum, average and maximum value in angstrom for the 
45% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0821 1.0986 1.1975 
C–C 1.5192 1.6454 1.6980 
O–C 1.2193 1.3472 1.5546 
Sr–H 2.1180 2.4688 2.7785 
Sr–C 2.6973 3.0108 3.4189 
Sr–O 1.9701 2.3730 3.2996 
Sr–Sr 3.3499 3.8762 4.6151 
Y–H 2.5110 2.5736 2.6363 
Y–O 1.8891 2.2210 2.5327 
Y–Sr 3.2172 3.9441 4.7494 
Y–Y 3.3584 3.7519 4.2029 

Ce–O 1.8106 2.2347 3.1955 
Ce–Sr 3.2749 4.0021 4.8443 
Ce–Y 3.2410 3.9262 4.5801 

Ce–Ce 3.4097 3.5096 3.5737 
Eu–O 2.1923 2.4658 2.6783 
Eu–Sr 3.3424 3.9271 4.8281 
Eu–Y 3.4150 4.0764 4.5869 

Eu–Ce 3.9434 4.4997 4.6795 
Eu–Eu 3.3450 3.5418 3.8405 

 

Table S12. Distance between atoms with its minimum, average and maximum value in angstrom for the 
50% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0815 1.0955 1.1775 
C–C 1.5090 1.5454 1.5920 
O–C 1.2093 1.3262 1.5486 
Sr–H 2.1082 2.4628 2.7785 
Sr–C 2.6873 3.0008 3.4099 
Sr–O 1.9309 2.3630 3.2899 
Sr–Sr 3.3599 3.9762 4.8151 
Y–H 2.5110 2.5736 2.6363 
Y–O 1.7991 2.1210 2.6327 
Y–Sr 3.2172 3.9441 4.7494 
Y–Y 3.3574 3.8599 4.5069 

Ce–O 1.8806 2.2237 3.1955 
Ce–Sr 3.2747 4.0028 4.8543 
Ce–Y 3.2410 3.9262 4.5801 

Ce–Ce 3.4097 3.5096 3.5737 
Eu–O 2.2084 2.4439 2.6283 
Eu–Sr 3.3424 3.9271 4.8281 
Eu–Y 3.4150 4.0764 4.5869 

Eu–Ce 3.9434 4.4997 4.6795 
Eu–Eu 3.4106 3.5621 3.7699 
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Table S13. Distance between atoms with its minimum, average and maximum value in angstrom for the 
55% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0825 1.0955 1.1775 
C–C 1.5152 1.5828 1.6117 
O–C 1.2141 1.3289 1.5574 
Sr–H 2.1148 2.4638 2.8786 
Sr–C 2.6783 3.1318 3.4189 
Sr–O 2.0319 2.3672 2.9199 
Sr–Sr 3.3487 3.9752 4.8104 
Y–H 2.5314 2.5785 2.6562 
Y–O 1.801 2.2106 2.6217 
Y–Sr 3.2078 3.9541 4.7258 
Y–Y 3.3451 3.8602 4.4598 

Ce–O 1.8902 2.2307 3.2152 
Ce–Sr 3.2841 4.0128 4.8558 
Ce–Y 3.2405 3.9256 4.5902 

Ce–Ce 3.4187 3.5209 3.5656 
Eu–O 2.2509 2.4695 2.6332 
Eu–Sr 3.3465 3.9381 4.8205 
Eu–Y 3.4144 4.0752 4.6598 

Eu–Ce 3.9521 4.4802 4.6851 
Eu–Eu 3.4682 3.5109 3.8508 

 

Table S14. Distance between atoms with its minimum, average and maximum value in angstrom for the 
60% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0812 1.0854 1.7726 
C–C 1.5192 1.5406 1.5912 
O–C 1.2198 1.3165 1.5467 
Sr–H 2.1181 2.4632 2.7895 
Sr–C 2.6871 3.0121 3.4135 
Sr–O 1.9308 2.3622 3.2884 
Sr–Sr 3.3598 3.9754 4.8126 
Y–H 2.5102 2.5742 2.6384 
Y–O 1.7998 2.1523 2.6351 
Y–Sr 3.2178 3.9456 4.7523 
Y–Y 3.3571 3.8369 4.5024 

Ce–O 1.8836 2.2289 3.1764 
Ce–Sr 3.2741 4.0128 4.8568 
Ce–Y 3.2412 3.9275 4.5803 

Ce–Ce 3.4187 3.5248 3.5702 
Eu–O 2.1589 2.3874 2.5298 
Eu–Sr 3.3413 3.8702 4.6909 
Eu–Y 3.4143 4.0892 4.5801 

Eu–Ce 3.9502 4.9741 4.6598 
Eu–Eu 3.3521 3.4492 3.5715 
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Table S15. Distance between atoms with its minimum, average and maximum value in angstrom for the 
65% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0812 1.0921 1.1756 
C–C 1.5084 1.5402 1.5867 
O–C 1.2084 1.3161 1.5298 
Sr–H 2.1107 2.4569 2.7784 
Sr–C 2.6869 3.0456 3.4167 
Sr–O 1.9322 2.3645 3.2904 
Sr–Sr 3.3601 3.9754 4.8205 
Y–H 2.5117 2.5784 2.6531 
Y–O 1.8012 2.1132 2.6389 
Y–Sr 3.2214 3.9456 4.7486 
Y–Y 3.3402 3.8552 4.5061 

Ce–O 1.8906 2.2304 3.1957 
Ce–Sr 3.2751 4.0126 4.8542 
Ce–Y 3.2409 3.9265 4.5903 

Ce–Ce 3.4156 3.5184 3.5689 
Eu–O 2.1909 2.3812 2.6256 
Eu–Sr 3.3412 3.9237 4.8108 
Eu–Y 3.4159 4.0786 4.5802 

Eu–Ce 3.9485 4.4892 4.6804 
Eu–Eu 3.4504 3.5297 3.6714 

 

Table S16. Distance between atoms with its minimum, average and maximum value in angstrom for the 
70% Phosphor/PMMA film.  

Bond Minimum distance / Å Average distance / Å Maximum distance / Å 
C–H 1.0821 1.0923 1.1746 
C–C 1.5092 1.4856 1.5982 
O–C 1.2186 1.3268 1.5445 
Sr–H 2.1073 2.4631 2.7795 
Sr–C 2.6678 3.0108 3.4156 
Sr–O 1.9399 2.3598 3.2897 
Sr–Sr 3.3601 3.9741 4.8106 
Y–H 2.5169 2.5784 2.6303 
Y–O 1.8099 2.1207 2.6359 
Y–Sr 3.2287 3.9405 4.7806 
Y–Y 3.3581 3.8609 4.5109 

Ce–O 1.8941 2.2256 3.1942 
Ce–Sr 3.2759 4.0128 4.8542 
Ce–Y 3.2456 3.9189 4.5904 

Ce–Ce 3.4108 3.5175 3.5642 
Eu–O 2.1589 2.3487 2.6752 
Eu–Sr 3.3432 3.9706 4.8298 
Eu–Y 3.4142 4.0768 4.5899 

Eu–Ce 3.9411 4.4999 4.6798 
Eu–Eu 3.3421 3.3891 3.5715 
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Table S17. Eu–O bond length for the phosphor according to previous work published by us [34], and the 
least and most neighbored EuIII environment for the 55% film. 

Eu–L(i) bond Bond length / Å 

Bulk 

phosphor 

Least neighbored environment Most neighbored environment 

O(1) 2.306 2.294 2.284 

O(2) 2.351 2.342 2.326 

O(3) 2.306 2.296 2.288 

O(4) 2.351 2.338 2.328 

O(5) 2.426 2.411 2.402 

O(6) 2.425 2.407 2.399 

Eu 4.021 3.369 3.352 
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Supplementary note S9 – Photoluminescence and theoretical Judd-Ofelt parameters 
 

 

Fig S12. (a) Excitation spectra for all films and (b) emission spectra for all films recorded at 298 K, λexc = 
394 nm. 

 

Fig S13. 1931 color chromaticity diagram (CIE) for all luminescent films 

 

 

 

 

B
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Table S18. CIE coordinates for all luminescent films 

Phosphor / % CIE coordinates Color purity / % 
40 (0.635; 0.349) 93.3 
45 (0.639; 0.352) 94.4 
50 (0.645; 0.344) 95.8 
55 (0.651; 0.342) 96.0 
60 (0.653; 0.345) 96.5 
65 (0.659; 0.339) 97.8 
70 (0.656; 0.341) 98.1 
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Fig S14. Emission decay curves at 298 K. 

All calculations reported in the supplementary note S3 resulted in the 

contribution of the FED and DC mechanism, which are listed in Table S19. 

Table S19. Calculated relative (%) contributions of the forced electric dipole (FED) alongside the dynamic 
coupling (DC) mechanism to the total theoretical intensity parameters, and the contribution of the bond 
overlap polarizability (𝛼𝛼𝑂𝑂𝑂𝑂) to the intensity parameters. 

 
Film 

% FED contribution % DC contribution 𝜶𝜶𝑶𝑶𝑶𝑶 contribution / % 

Ω2 Ω4 Ω2 Ω4 Ω2 Ω4 

40% 2.60 2.50 97.4 97.5 1.01 5.21 

45% 1.30 4.70 98.7 95.3 0.99 2.09 

50% 1.40 4.40 98.6 93.6 0.95 2.82 

55% 1.60 6.00 98.4 94.0 1.04 3.54 

60% 1.50 5.50 98.5 94.5 1.03 3.81 

65% 1.70 4.20 98.3 95.8 1.08 4.54 

70% 2.20 6.00 97.8 94.0 1.11 3.21 
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