Supporting Information of

Joint experimental and theoretical study of

PbGa₂S₄ under compression

T. Garcia-Sanchez^{*a*}, S. Gallego-Parra^{*b*,*}, A. Liang^{*c*,**}, J.L Rodrigo- Ramon^{*c*}, A. Muñoz^{*d*}, P. Rodriguez-Hernandez^{*d*}, J. Gonzalez-Platas^{*d*}, J.A Sans^{*b*}, V.P Cuenca-Gotor^{*b*}, Hussien H. Osman, C^{*c*}. Popescu^{*e*}, Veaceslav Ursaki^{*f*}, Ion M. Tiginyanu^{*f*}, D. Errandonea^{*c*} and F.J. Manjón^{*b*}

^aDepartamento de Ingeniería Eléctica, MALTA Consolider Team, Universitat Politècnica de València, Camino de Vera, s/n., Valencia, 46022, Spain

^bInstituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, Camino de Vera, s/n., Valencia, 46022, Spain

^cDepartamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de Valencia, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain,

^dDepartamento de Física, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, La Laguna, Tenerife, 38205, Spain

^eALBA-CELLS MALTA Consolider Team Cerdanyola del Valles (Barcelona) Cataluña 08290 Spain

^fNational Center for Materials Study and Testing, Technical University of Moldova, Chisinau MD-2004, Republic of Moldova

Present address: *, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France, and **. Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

1.- Single crystal XRD measurements at room pressure

Figure S1. Detail of the crystal structure of $PbGa_2S_4$ along the *b* and *c* axes. Pb, Ga, and S atoms are big gray, small gray, and orange circles, respectively.

Experimental. Single orange plate crystals of PbGa₂S₄ were used. A suitable crystal with dimensions $0.12 \times 0.11 \times 0.04 \text{ mm}^3$ was selected and mounted on a SuperNova, Dualflex, EosS2 diffractometer. The crystal was kept at a steady T = 293(2) K during data collection. The diffraction data was collected with the CrysAlis Pro software [S1] and the structure was solved with the ShelXT 2018/2 [S2,S3] solution program using dual methods and by using Olex2 [S4] as the graphical interface. The model was refined with ShelXL 2018/3 using full matrix least squares minimisation on F^2 .

The structure was solved and the space group Fddd (# 70) determined by the ShelXT 2018/2 [S2,S3] structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of ShelXL 2018/3 [S2,S3]. All non-hydrogen atoms were refined anisotropically. Sulfur atom positions were calculated geometrically and refined using the riding model.

Compound	PbGa ₂ S ₄
Formula	PbGa ₂ S ₄
D _{calc.} / g cm ⁻³	4.907
μ/mm^{-1}	35.610
Formula Weight	474.87
Colour	orange
Shape	plate
Size/mm ³	0.12×0.11×0.04
T/K	293(2)
Crystal System	orthorhombic
Space Group	Fddd
a/Å	12.1674(2)
b/Å	20.4180(4)
c/Å	20.7005(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
γ/°	90
V/Å ³	5142.71(18)
Ζ	32
Ζ'	1
Wavelength/Å	0.71073
Radiation type	Mo K $_{\alpha}$
$\Theta_{min}/^{\circ}$	2.183
$\Theta_{max}/^{\circ}$	28.278
Measured Refl's.	24555
Indep't Refl's	1597
Refl's I≥2 <i>σ</i> (I)	1195
$R_{ m int}$	0.0353
Parameters	66
Restraints	0
Largest Peak	1.129
Deepest Hole	-0.841
GooF	1.185
wR2 (all data)	0.0520
wR_2	0.0480
R₁ (all data)	0.0357
R1	0.0236

Table S1: Anisotropic Displacement Parameters (×10⁴) for PbGa₂S₄. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U ₁₂
Pb3	20.4(2)	23.2(2)	22.7(3)	0	0	0
Pb2	15.20(18)	24.9(2)	24.6(2)	0	0	3.29(10)
Pb1	15.9(2)	33.8(3)	22.9(3)	0	0	0
Ga1	7.3(2)	11.6(2)	18.8(3)	0.0(2)	0.1(2)	-0.98(18)
Ga2	7.4(2)	12.1(3)	19.1(3)	-0.1(2)	0.3(2)	-0.64(17)
S2	10.5(5)	12.4(5)	14.7(5)	2.4(8)	-2.4(8)	-0.1(4)
S3	9.5(4)	14.6(5)	14.4(5)	-2.2(8)	2.3(8)	1.9(4)

Atom	U 11	U 22	U 33	U 23	U 13	U 12	
S4	5.7(4)	10.6(5)	18.3(5)	-1.4(6)	0.5(6)	-0.1(3)	
S1	7.7(4)	10.0(5)	21.3(6)	-0.4(6)	1.4(6)	-1.5(4)	

Atom	Atom	Length/Å
Pb3	S31	3.0918(19)
Pb3	S3 ²	3.0918(19)
Pb3	S3 ³	3.0918(19)
Pb3	S34	3.0918(19)
Pb3	S4 ⁵	3.0801(19)
Pb3	S4 ⁶	3.0801(19)
Pb3	S47	3.0801(19)
Pb3	S4	3.0802(19)
Pb2	S2 ⁸	3.0772(18)
Pb2	S2 ⁹	3.0772(18)
Pb2	S3 ¹⁰	3.1117(18)
Pb2	S3 ¹¹	3.1117(18)
Pb2	S4 ¹⁰	3.0769(19)
Pb2	S4 ¹¹	3.0769(19)
Pb2	S112	3.059(2)
Pb2	S1	3.059(2)
Pb1	S2 ⁶	3.0973(19)
Pb1	S2 ¹³	3.0973(19)
Pb1	S2	3.0974(19)

Table S2: Bond Lengths in Å for PbGa₂S₄.

Atom	Atom	Length/Å
Pb1	S212	3.0973(19)
Pb1	S112	3.076(2)
Pb1	S1 ⁶	3.076(2)
Pb1	S1	3.076(2)
Pb1	S1 ¹³	3.0762(19)
Ga1	S2 ⁸	2.3026(16)
Ga1	S2	2.2952(16)
Ga1	S4	2.2443(11)
Ga1	S1	2.3010(12)
Ga2	S3	2.2987(16)
Ga2	$S3^4$	2.3031(16)
Ga2	S49	2.3023(12)
Ga2	S1	2.2451(12)

 $^{1}1/4+x,1-y,1/4+z;$ $^{2}3/2-x,-1/4+y,1/4+z;$ $^{3}1/4+x,-$
1/4+y,1/2-z; $^{4}3/2-x,1-y,1/2-z;$ $^{5}7/4-x,+y,3/4-z;$ $^{6}+x,3/4-y,3/4-z;$ $^{7}7/4-x,3/4-y,+z;$ $^{8}1-x,1/2-y,1/2-z;$ $^{9}-$
1/4+x,1/4+y,1/2-z; $^{10}5/4-x,+y,1/4-z;$ $^{11}-1/2+x,3/4-y,1/4-z;$ $^{12}3/4-x,3/4-y,+z;$ $^{13}3/4-x,+y,3/4-z$

Table S3: Bond Angles (in $^{\circ}$) for PbGa₂S₄.

Atom	Atom	Atom	Angle	Atom	Atom	Atom
S31	Pb3	S3 ²	147.38(4)	S29	Pb2	S311
S3 ³	Pb3	S34	147.38(4)	S2 ⁸	Pb2	S311
S31	Pb3	S34	68.51(7)	S310	Pb2	S311
S3 ²	Pb3	S3 ³	68.51(7)	S4 ¹⁰	Pb2	S2 ⁹
S31	Pb3	S3 ³	121.60(7)	S4 ¹¹	Pb2	S29
S3 ²	Pb3	S34	121.60(7)	S4 ¹⁰	Pb2	S2 ⁸
S45	Pb3	S3 ²	73.89(3)	S4 ¹¹	Pb2	S2 ⁸
S4	Pb3	S3 ³	73.89(3)	S4 ¹⁰	Pb2	S310
S4 ⁵	Pb3	S3 ³	77.00(3)	S411	Pb2	S310
S4 ⁶	Pb3	S34	77.00(3)	S4 ¹⁰	Pb2	S311
S4 ⁵	Pb3	S31	78.54(3)	S4 ¹¹	Pb2	S311
S47	Pb3	S3 ³	78.54(3)	S4 ¹⁰	Pb2	S411
S4 ⁶	Pb3	S31	73.89(3)	S1 ¹²	Pb2	S2 ⁹
S47	Pb3	S3 ²	134.53(3)	S1 ¹²	Pb2	S2 ⁸
S4	Pb3	S34	78.54(3)	S1	Pb2	S28
S4 ⁵	Pb3	S34	134.53(3)	S1	Pb2	S29
S4	Pb3	S31	134.53(3)	S1 ¹²	Pb2	S310
S4 ⁶	Pb3	S3 ²	78.54(3)	S1	Pb2	S311
S4 ⁶	Pb3	S3 ³	134.53(3)	S1	Pb2	S3 ¹⁰
S4	Pb3	S3 ²	77.00(3)	S1 ¹²	Pb2	S311
S47	Pb3	S34	73.89(3)	S1	Pb2	S410
S47	Pb3	$S3^1$	77.00(3)	S1	Pb2	S411
S4 ⁵	Pb3	S4	144.60(5)	S1 ¹²	Pb2	S4 ¹⁰
S47	Pb3	S4	64.02(5)	S1 ¹²	Pb2	S411
S4 ⁶	Pb3	S4	128.53(5)	S1 ¹²	Pb2	S1
S4 ⁵	Pb3	S47	128.52(5)	S2 ¹³	Pb1	S2
S4 ⁵	Pb3	S4 ⁶	64.02(5)	S2 ⁶	Pb1	S2
S46	Pb3	S47	144.60(5)	S2 ¹²	Pb1	S2
S2 ⁸	Pb2	S2 ⁹	149.22(5)	S26	Pb1	S212
S29	Pb2	S3 ¹⁰	68.90(6)	S26	Pb1	S213
S2 ⁸	Pb2	S3 ¹⁰	121.04(6)	S2 ¹³	Pb1	S2 ¹²

Atom	Atom	Atom	Angle
S1 ⁶	Pb1	S2 ⁶	71.58(3)
S1	Pb1	S2 ⁶	79.29(3)
S1	Pb1	S2	71.58(3)
S1 ¹²	Pb1	S2 ¹²	71.58(3)
S1 ¹²	Pb1	S2 ¹³	79.29(3)
S1 ¹³	Pb1	S2 ¹²	79.29(3)
S16	Pb1	S213	81.40(3)
S1 ¹³	Ph1	S2 ⁶	81.40(3)
S1 ¹²	Ph1	<u>\$2</u>	81 40(3)
S16	Ph1	S2 ¹²	130 64(4)
S113	Ph1	S2	130.64(4)
S1	Ph1	S213	130.64(4)
S113	Ph1	\$213	71 58(3)
S16	Dh1	52 \$2	79 29(3)
S1	D1 Dh1	S2 S212	9.29(3)
S1 S112	Db1	52 \$26	12064(4)
S1 S16	PD1 Db1	52° \$113	130.04(4) 66 20(6)
S1 ⁻ C113	FDI Dh1	S1	156 51(0)
S1	FDI Dh1	S1 C1	130.31(4)
51° C112	FDI Dh1	S1 C16	119.00(3) 15651(4)
S1	FUI Dh1	51° C113	130.31(4)
S1 ¹² S1 ¹²	PDI Db1	S1 ¹⁵	119.00(5)
51	FUI Col	S1 C29	00.30(0)
52	Gal	52 ⁷ 51	97.35(4)
54	Gal	S1 C29	103.54(7)
54 S4	Gal	32° 52	123.09(7) 122.61(7)
54 S4	Gal	32 S1	123.01(7) 102.62(4)
54 C1	Ga1	S1 C29	102.02(4) 102.07(7)
51	Gal Co2	S24	103.07(7)
22	Gaz	S78	10746(7)
55 548	Ga2	S24	107.40(7)
S1	Ga2	23	107.00(7) 120.02(7)
S1	Ga2	S34	120.92(7) 121 33(7)
S1	Ga2	S48	10242(4)
Dh29	\$2	Dh1	102.42(4) 14847(4)
Co1	52 \$2	Ph29	11228(7)
Ga19	52 S2	Ph29	91 35(6)
Gal	52 S2	Ph1	91,99(6)
Ga1 ⁹	52 S2	Ph1	112 26(7)
Gal	52 S2	Ga19	82 65(4)
Ph34	S3	Ph211	146 63(4)
Ga2	S3	Ph34	88 97(6)
Ga24	S3	Ph34	116 12(7)
Ga2	S3	Ph211	116.97(7)
Ga2 ⁴	S3	Ph2 ¹¹	88 98(6)
Ga2	S3	Ga24	83 30(4)
Ph2 ¹¹	S4	Ph3	115 94(3)
Gal	S4	Ph3	118.92(8)
Gal	S4	Ph2 ¹¹	120.06(8)
Gal	S4	$Ga2^3$	112.76(5)
Ga2 ³	S4	Pb3	89.19(5)
Ga2 ³	S4	Pb2 ¹¹	89.85(5)
Pb2	S1	Pb1	113.49(3)
Ga1	S1	Pb2	91.84(6)
Ga1	S1	Pb1	92.42(6)
Ga2	S1	Pb2	119.41(8)
Ga2	S1	Pb1	119.40(8)
Ga2	S1	Ga1	112.57(5)

¹1/4+x,1-y,1/4+z; ²3/2-x,-1/4+y,1/4+z; ³1/4+x,-1/4+y,1/2-z; ⁴3/2-x,1-y,1/2-z; ⁵7/4-x,+y,3/4-z; ⁶+x,3/4-y,3/4-z; ⁷7/4-x,3/4-y,+z; ⁸-1/4+x,1/4+y,1/2-z; ⁹1-x,1/2-y,1/2-z; ¹⁰-1/2+x,3/4-y,1/4-z; ¹¹5/4-x,+y,1/4-z; ¹²3/4-

Figure S2. Detail of the crystal structure of $PbGa_2S_4$ in a perspective that highlights its layered characteristic. GaS_4 tetrahedra are shown in green and PbS_8 square antiprismatic polyhedra is black. Sulfur atoms are shown in yellow.

2.- RS measurements at room pressure

(a)

Figure S3. Normalized Raman spectra of $PbGa_2S_4$ at room pressure. (a) Modes with A_g symmetry. (b) Modes with B_g symmetry. The asterisk in the Raman spectrum corresponding to the B_{3g} symmetry is related to an A_g (xx) mode.

Figure S4. Normalized polarized Raman spectra of PbGa₂S₄ at high pressure up to 24 GPa.

Table S4

Raman-active frequencies of A_g , B_{1g} , B_{2g} and B_{3g} modes in PbGa₂S₄ at room pressure obtained from polarized RS measurements. Data from Ref. Kamenshchikov et al. (2007) (noted with subindex k) are provided for comparison.

A_{gk}	Ag	B _{1gk}	B 1g	B_{2gk}	B_{2g}	B 3gk	B 3g
	12.2		20	19.7	20	19	
	19.7	25		34	33.9	31	34
	20.3	35	34.3	41	40.7		
	22.4	42		47	47.2	47	45
	25	46	45.6	55	55.0	55	
	34.1	67	65	89	86.5	89	81
	34.9	83	80.5	121	121		112
	45.5		87	160	160.8	132	131
46	46.2	93	91.2	176	177.0	150	149
53	51.9	98	96.5		277.0	175	179
	62.7	152		293	293.1	187	184
67	64.0	161	166.2	362	354.8	280	277
80	77.0	167			398.6	298	297
	86.8	178				336	330
88	87.6	187	187.2			345	355
118		274	273.7				
127	125.7	292					
159	150.8	321					
166	166.6	356	355				
172		398	396.9				
	182.0						
185	185.4						
	198.5						
277	276.4						
332							
353	355.0						
	397.8						
404	404.1						

Mode	ω_0	a_1	a_2	Mode	ω_0	a_1	a_2
$B_{2g}{}^1$	17.7(2)	3.81(0)	-0.1(0)	$B_{2g}{}^{12} \\$	162.9(2)	3.3(0)	0.0(0)
$B_{1g}{}^1$	30.4(1)	2.2(0)	-0.1(0)	$B_{2g}{}^{13} \\$	167.1(1)	4.1(0)	0.0(0)
$B_{3g}{}^1 \\$	33.8(1)	0.7(0)	-0.1(0)	$B_{3g}{}^{13} \\$	167.3(1)	4.4(0)	0.0(0)
${B_{2g}}^2 \\$	36.46(1)	1.8(0)	0.0(0)	${B_{2g}}^{14}$	169.7(1)	4.3(0)	0.0(0)
$B_{3g}{}^2 \\$	39.2(0)	1.6(0)	-0.1(0)	$B_{3g}{}^{14}$	173.9(0)	5.8(0)	0.0(0)
${B_{1g}}^2 \\$	43.6(1)	2.4(0)	0.0(0)	$A_g^{\ 9}$	170.5(2)	3.2(0)	0.0(0)
$A_g{}^1$	44.0(1)	2.4(0)	-0.1(0)	$B_{1g}{}^{12}$	174.2(1)	3.3(0)	0.0(0)
$B_{3g}{}^3 \\$	46.4(0)	1.8(0)	0.0(0)	$B_{1g}{}^{13} \\$	179.6(0)	5.3(0)	0.0(0)
$B_{2g}{}^3$	50.5(0)	1.8(0)	0.0(0)	A_g^{10}	182.3(0)	5.4(0)	0.0(0)
${B_{3g}}^4$	53.8(0)	1.7(0)	0.0(0)	A_g^{11}	195.5(0)	4.8(0)	0.0(0)
${B_{2g}}^4$	64.3(0)	2.7(0)	0.0(0)	$B_{1g}{}^{14}$	262.9(0)	2.2(0)	0.0(0)
$\mathbf{B}_{3g}{}^5$	79.1(2)	1.8(0)	-0.1(0)	A_g^{12}	266.0(0)	2.0(0)	0.0(0)
${B_{2g}}^5$	77.8(1)	2.1(0)	0.0(0)	$B_{3g}{}^{15}$	266.3(0)	3.4(0)	0.0(0)
$\mathbf{B}_{1g}{}^3$	78.6(0)	0.6(0)	0.0(0)	$B_{1g}{}^{15}$	272.1(0)	3.7(0)	0.0(0)
${B_{1g}}^4$	81.68(0)	0.7(0)	0.0(0)	$B_{2g}{}^{15}$	274.6(0)	3.7(0)	0.0(0)
$A_g^{\ 2}$	84.3(0)	0.1(0)	0.0(0)	$B_{1g}{}^{16} \\$	276.0(0)	4.1(0)	0.0(0)
$A_g{}^3$	88.7(1)	1.1(0)	0.0(0)	$B_{3g}{}^{16} \\$	276.4(0)	4.3(0)	-0.1(0)
$\mathbf{B_{1g}}^5$	88.8(1)	1.3(0)	0.0(0)	A_g^{13}	278.8(0)	4.0(0)	0.0(0)
\mathbf{B}_{1g}^{6}	89.8(0)	1.9(0)	0.0(0)	$B_{2g}{}^{16} \\$	278.9(0)	4.5(0)	-0.1(0)
$A_g{}^4$	91.6(0)	1.1(0)	0.0(0)	A_g^{14}	283.3(0)	5.1(0)	-0.1(0)
$\mathbf{B}_{3g}{}^{6}$	98.1(0)	-0.6(0)	0.0(0)	${B_{2g}}^{17}$	292.0(0)	3.1(0)	0.0(0)
$\mathbf{B}_{3g}{}^7$	108.3(0)	-0.4(0)	0.0(0)	$B_{3g}{}^{17}$	292.1(0)	3.2(0)	0.0(0)
$B_{2g}{}^{6}$	107.4(0)	-0.7(0)	0.0(0)	$B_{3g}{}^{18} \\$	292.7(0)	3.1(0)	0.0(0)
${B_{2g}}^7$	110.4(0)	-0.7(0)	0.0(0)	$B_{2g}{}^{18} \\$	293.3(0)	3.0(0)	0.0(0)
$\mathbf{B}_{3g}{}^{8}$	112.7(0)	0.0(0)	0.0(0)	A_g^{15}	320.0(1)	2.4(0)	0.0(0)
${B_{2g}}^8$	113.7(0)	-0.1(0)	0.0(0)	$B_{1g}{}^{17}$	318.9(0)	3.0(0)	0.0(0)
$\mathbf{B_{3g}}^9$	114.7(2)	7.7(0)	-0.2(0)	$B_{3g}{}^{19} \\$	334.4(0)	3.0(0)	0.0(0)
$\mathbf{B_{2g}}^9$	128.8(3)	6.2(0)	-0.2(0)	$B_{1g}{}^{18} \\$	334.9(0)	3.5(0)	0.0(0)
${B_{2g}}^{10}$	144.7(2)	4.7(0)	-0.1(0)	A_g^{16}	335.9(0)	3.5(0)	0.0(0)
${B_{1g}}^7$	145.4(1)	0.8(0)	0.0(0)	A_g^{17}	336.9(0)	4.0(0)	0.0(0)
$A_g{}^5$	145.5(1)	0.1(0)	0.0(0)	$B_{2g}{}^{19} \\$	337.1(0)	3.0(0)	0.0(0)
$A_g^{\ 6}$	148.7(1)	2.6(0)	0.0(0)	\mathbf{B}_{1g}^{19}	338.1(0)	3.9(0)	0.0(0)

Table S5 Theoretical Raman-active frequencies at zero pressure (ω_0 , in cm^{-1}) and pressure coefficients (a_1 , in $cm^{-1}GPa^{-1}$; a_2 , in $cm^{-1}GPa^{-2}$) in PbGa₂S₄ according to fits to $\omega_0 + a_1 \cdot P + a_2 \cdot P^2$.

$B_{1g}{}^8 \\$	151.5(1)	2.2(0)	0.0(0)	${B_{3g}}^{20}$	338.1(0)	3.2(0) 0.0(0)
$B_{3g}{}^{10} \\$	153.5(2)	3.7(0)	-0.1(0)	${B_{2g}}^{20}$	339.1(0)	3.2(0) 0.0(0)
$A_g{}^7$	149.7(1)	4.2(0)	-0.1(0)	$B_{3g}{}^{21} \\$	363.2(0)	5.0(0) 0.0(0)
$B_{1g}{}^9$	152.9(2)	4.7(0)	-0.1(0)	$B_{2g}{}^{21} \\$	369.4(0)	5.3(0) -0.1(0)
\mathbf{B}_{1g}^{10}	155.2(1)	5.1(1)	0.0(0)	$B_{3g}{}^{22} \\$	370.3(0)	5.3(0) -0.1(0)
A_g^{8}	160.2(1)	3.2(2)	0.0(0)	$B_{1g}{}^{20} \\$	371.8(0)	5.8(0) -0.1(0)
${\bf B}_{3g}{}^{11}$	166.4(2)	1.7(0)	0.0(0)	$B_{2g}{}^{22} \\$	374.7(0)	5.4(0) -0.1(0)
${\bf B}_{1g}{}^{11}$	163.2(1)	4.3(0)	0.0(0)	$A_g{}^{18} \\$	379.2(0)	5.6(0) -0.1(0)
\mathbf{B}_{2g}^{11}	160.9(2)	2.8(0)	0.2(0)	A_g^{19}	380.0(0)	6.1(0) -0.1(0)
B_{3g}^{12}	162.8(1)	4.7(0)	0.0(0)	$\mathbf{B_{1g}}^{21}$	381.5(0)	5.3(0) 0.0(0)

Tabla S6

Theoretical Raman-active frequencies at 16 GPa (ω_{16} , in cm^{-1}) and pressure coefficients (a_1 , in $cm^{-1}GPa^{-1}$; a_2 , in $cm^{-1}GPa^{-2}$) in Pb₆Ga₁₀S₂₁ according to fits to $\omega_{16}+a_1\cdot(P-16)+a_2\cdot(P-16)^2$.

Mode	ω_0	a_1	a_2
Bg	43.5 (0)	2.0 (0)	-0.1 (0)
Bg	49.4 (0)	2.6 (0)	-0.1 (0)
Ag	48.0 (0)	0.4 (0)	0 (0)
Ag	54.4 (0)	0.9 (0)	0 (0)
Ag	56.4 (0	0.5 (0)	0 (0)
Bg	59.6 (0)	1.1 (0)	0 (0)
Bg	67.7 (0)	1.0 (0)	0 (0)
Ag	74.0 (0)	0.7 (0)	0 (0)
Ag	84.3 (0)	1.3 (0)	0 (0)
Bg	85.6 (0)	1.2 (0)	0 (0)
Bg	89.3 (0)	1.4 (0)	0 (0)
Ag	91.9 (0)	0.8 (0)	0 (0)
Ag	94.7 (0)	0.9 (0)	0 (0)
Bg	100.8 (0)	0.7 (0)	0 (0)
Ag	103.1 (0)	1.0 (0)	0 (0)
Ag	113.4 (0)	1.2 (0)	0 (0)
Bg	116.7 (0)	1.2 (0)	0 (0)
Ag	124.5 (0)	1.3 (0)	0 (0)
Ag	137.6 (0)	1.5 (0)	0 (0)
Ag	142.6 (0)	1.7 (0)	0 (0)
Bg	161.2 (0)	2.9 (0)	0 (0)
Ag	162.0 (0)	1.1 (0)	0 (0)
Ag	177.2 (0)	1.9 (0)	0 (0)
Ag	183.7 (0)	1.3 (0)	0 (0)
Ag	187.8 (0)	1.5 (0)	0 (0)
Ag	204.8 (0)	2.0 (0)	0 (0)
Bg	216.4 (0)	3.0 (0)	0 (0)
Ag	217,9 (0)	2.2 (0)	0 (0)
Ag	226.9 (0)	3.0 (0)	0 (0)
Bg	242,7 (0)	3.3 (0)	0 (0)
Ag	241.7 (0)	2.5 (0)	0 (0)
Bg	252.0 (0)	2.9 (0)	0 (0)
Bg	259.0 (0)	3.1 (0)	0 (0)
Ag	266.0 (0)	2.9 (0)	0 (0)
Bg	270.1 (0)	3.2 (0)	0 (0)
Ag	271.3 (0)	2.9 (0)	0 (0)
Ag	279.6 (0)	2.6 (0)	0 (0)
Bg	283.2 (0)	3.0 (0)	0 (0)
Ag	284.9 (0)	2.9 (0)	0 (0)
Bg	291.2 (0)	2.7 (0)	0 (0)
Ag	292.8 (0)	2.3 (0)	0 (0)
Bg	297.8 (0)	2.8 (0)	0 (0)

Bg	306.0 (0)	3.9 (0)	0 (0)
Ag	315.7 (0)	2.7 (0)	0 (0)
Ag	323.6 (0)	2.5 (0)	0 (0)
Ag	324.3 (0)	2.9 (0)	0 (0)
Ag	331.2 (0)	2.7 (0)	0 (0)
Ag	337.4 (0)	2.7 (0)	0 (0)
Ag	344.2 (0)	2.7 (0)	0 (0)
Ag	349.5 (0)	3.1 (0)	0 (0)
Ag	353.7 (0)	2.6 (0)	0 (0)
Ag	366.5 (0)	3.3 (0)	0 (0)
Ag	371.9 (0)	4.1 (0)	0 (0)
Ag	389.0 (0)	2.9 (0)	0 (0)

Figure S5. Pressure dependence of the experimental (symbols) and theoretical (lines) Raman frequencies of $Pb_6Ga_{10}S_{21}$ during compression. The red (blue) lines correspond to the theoretical A_g (B_g) modes.

Figure S6. (Top) Zoom of the total and partial electronic density of states of $PbGa_2S_4$ at 0 GPa. (Bottom) Zoom of the total and partial electronic density of states of $Pb_6Ga_{10}S_{21}$ at 15.3 GPa

Figure S7. (Top) Electronic band structure of $Pb_6Ga_{10}S_{21}$ at 15.3 GPa. (Bottom) Total and partial electronic density of states at 15.3 GPa

Bibliography

[S1] CrysAlisPro Software System, Rigaku Oxford Diffraction, (2020).

[S2] Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

[S3] Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

[S4] O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.