Supplementary Information

For

Epitaxy growth of MAPbBr_xCl_{3-x} single-crystalline perovskite films toward spectral selective detection in both broadband and narrowband range

Yuzhu Pan¹, Xin Wang^{1*}, Yubing Xu¹, Shunjie Chai¹, Jie Wu¹, Zhiwei Zhao¹, Qing Li¹, Jun Wu¹, Jing Chen¹, Zhuoya Zhu¹, Byung Seong Bae², Omolola Esther Fayemi³, Jianming Zhou⁴, Ying Zhu⁵, and Wei Lei^{1*}

¹School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China

²Department of Electronics & Display Engineering Hoseo University, Hoseo Ro 79, Asan city, Chungnam 31499, Republic of Korea

³Department of Chemistry, School of Mathematics and Physical Sciences Faculty of Natural and Agricultural Sciences North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

⁴ E-spectrum Optoelectronic Co. Ltd., Suzhou 215111, China

⁵ E-xray Electronic Co. Ltd., Suzhou 215131, China

* Correspondence: Wei Lei <u>lw@seu.edu.cn</u> Xin Wang <u>xinw@seu.edu.cn</u>

Keywords: epitaxial growth, mixed-halide perovskite, photoelectric characteristics, tunable spectral response, dual-mode detection

Figure S1 (a) Photograph of the used Teflon mould with a square of $15 \times 15 \text{ mm}^2$ and thickness of 1 mm. (b) Photograph of the epitaxial $2 \times 2 \text{ MAPbBr}_3$ single-crystalline arrays on MAPbCl₃ crystals with single pixel area of $4 \times 4 \text{ mm}^2$.

Figure S2 Cross-sectional SEM images of the formed heterojunction interfaces with the duration of MAPbCl₃ crystals dipping into hot MAPbBr₃ solution as (a) 20 seconds, (b) 50 seconds, (c) 2 minutes, (d) 10 minutes, (e) 1 hours to (f) 4 hours, respectively.

Figure S3 EDX line scanning results images of the Br/(Br+Cl) atom intensity ratio across the epitaxial interface of formed heterojunctions with the duration of MAPbCl₃ crystals dipping into hot MAPbBr₃ solution as (a) 2 minutes, (b) 10 minutes, and (c) 3 hours, respectively.

Figure S4 HRTEM image of the interface region of Bi-MAPbCl₃/MAPbBr₃ single-crystalline heterojunction.

Figure S5 EDX line scanning results images of the Br/(Br+Cl) atom intensity ratio form epilayer MAPbBr_xCl_{3-x} surface to the MAPbCl₃ substrate.

Figure S6 XPS valence spectra of fabricated single-crystalline MAPbBr_xCl_{3-x} samples with x=0, 1, 1.5, 2, 2.5, 3, respectively.

Figure S7 Schematic diagram of (a) sheet resistivity measurement and (b) hall effect measurement for the epitaxial MAPbBrxCl3-x single-crystalline layers by four contacts van der Pauw method.

Figure S8 (a) Schematic diagram of the voltage-dependent photocurrent measurement for the epitaxial MAPbBr_xCl_{3-x} single-crystalline planar-type devices. (b-f) The results of voltage-dependent photocurrent for different epitaxial MAPbBr_xCl_{3-x} layers. The red solid line represents a mobility-lifetime fitting to the data according to the Hecht equation.

Figure S9 Photo response spectra of the epitaxial planar-type MAPbBr₃ photodetectors with different thickness upon bottom illumination at an external electric field of 30 V mm⁻¹.

Figure S10 EQE spectra of the planar-type MAPbBr_{2.5}Cl_{0.5} photodetector under various external electric field upon (a) top illumination and (b) bottom illumination.

Figure S11 Specific detectivity (D*) of the planar-type MAPbBr₂₅Cl₀₅ photodetector under 30 V mm⁻¹ upon bottom illumination.

Figure S12 Current density-Electric field hysteresis loop for the epitaxial MAPbBr₂₅Cl₀₅ planar-type device in darkness.

Figure S13 Long-time stability of the epitaxial MAPbBr₂₅Cl₀₅ photodetector: (a) I-V stability in darkness and (b) photo response stability after 3 month in air condition without any encapsulation.

Material	Morphology	Mobility (cm ² V ⁻¹ s ⁻¹)	Carrier lifetime (ns)	Diffusion length (µm)	Ref.
MAPbBr _x Cl _{3-x}	single- crystalline film	110~213	620~1360	16.6~24.8	This work
MAPbCl ₃	single-crystal	42 ± 9	662	3.0-8.5	1
MAPbCl ₃	single-crystal	26	31	NA	2
MAPbCl ₃	Polycrystalline film	NA	6	NA	2
MAPbBr ₃	single-crystal	81 ± 5	899 ± 127	5.4–14.2	3
MAPbBr ₃	single- crystalline film	60	10–60	1.5–3	4
MAPbBr _{2.94} Cl _{0.06}	single-crystal	560	5000	NA	5
MAPbBr ₃	single- crystalline film	60	189±10	5	6
MAPbBr ₃	single- crystalline film	261.94	60.26	NA	7
MAPbBr ₃	single- crystalline film	40.7(e); 27.3(h)	390	6.4(e); 5.2(h)	8
MAPbBr ₃	Polycrystalline film	0.26	168	0.33	6
MAPbBr ₃	Polycrystalline film	8.6(e); 9.0(h)	51	1.058 ± 0.048	9

Table S1 The key optoelectronic parameters of $MAPbBr_{x}Cl_{3-x}$ perovskite crystals and films reported in literatures.

Reference

- G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu and O. M. Bakr, *J Phys Chem Lett*, 2015, 6, 3781-3786.
- V. Adinolfi, O. Ouellette, M. I. Saidaminov, G. Walters, A. L. Abdelhady, O. M. Bakr and E. H. Sargent, *Adv Mater*, 2016, 28, 7264-7268.
- Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng, X. Zhang, K. Wang, L. Meng, H. Ye, M. Liu and S. F. Liu, *Advanced Materials*, 2018, **30**.
- 4. Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang and R. Ma, *Adv Mater*, 2018, **30**.
- 5. H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo, T. J. Savenije, L. Cao and J. Huang, *Nat Mater*, 2017, **16**, 826-833.
- M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent and O. M. Bakr, *Nat Commun*, 2015, 6, 8724.
- L. Zhang, L. Liu, P. Zhang, R. Li, G. Zhang and X. Tao, *ACS Appl Mater Interfaces*, 2020, 12, 39834-39840.
- 8. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang and C. Y. Su, *Adv Mater*, 2017, **29**.
- 9. R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao and M. A. Green, *The Journal of Physical Chemistry C*, 2015, **119**, 3545-3549.