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Methods of characterization

Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 

diffractometer with Cu K radiation (λ = 1.5418 Å), operated at 40 kV and 40 mA, in 

the 2θ range of 350° with 0.01°/step. Fourier-transform infrared (FT-IR) spectra 

were recorded on a Thermo Scientific Nicolet iS10 spectrophotometer. A 

Micromeritics ASAP 2020 analyzer was used for N2 adsorption/desorption 

measurements. Solid state 7Li cross polarization magic angle spinning nuclear 

magnetic resonance (7Li CP-MAS NMR) spectra were recorded on a 600 MHz Bruker 

AVANCE III HD spectrometer. X-ray photoelectron spectroscopy (XPS) analyses 

were conducted on a Thermo Scientific K-Alpha instrument. Scanning electron 

microscopy (SEM) images were taken by using a Quanta FEG-450 field emission 

scan electron microscopy. High-resolution transmission electron microscopic 

(HRTEM) images were taken by using a FEI-Talos F200s transmission electron 

microscopy. 

Ionic conductivity measurement

The ionic conductivity was evaluated by AC impedance measurement on a Gamry 

600+ electrochemical workstation in an enclosed environment. The electrode is 

assembled inside an argon-filled glove box. The details are summarized as follow: the 

powder sample was added into a PEEK tube with a diameter of 10 mm, and two gold 

flakes (diameter of 10 mm) as electrodes were put into the tube from the ends, then, 

the sample is extruded into compressed particles in the tube through a specially made 

titanium alloy, the thickness of pellet is ~2 mm.

The Li-ion transference number (tLi+) measurement

Li+
0

SIt
I



Herein, IS represent the steady current after polarization, and I0 is initial current. 

The lithium-ion transference number was evaluated by chronoamperometry on a 
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Gamry 600+ electrochemical workstation. Before the test, place the assembled 

symmetrical cell (Li|LiBF4/PC@PBI-COF/PTFE|Li) in an oven at 80℃ to balance 

the potential and ensure that the initial state of the battery is consistent. The bias 

voltage of the symmetrical cells is set to 10 mV.

Electrochemical stability test

The electrochemical stability test was evaluated by linear sweep voltammetry 

(LSV) on a Gamry 600+ electrochemical workstation. Before the test, place the half-

cell (Pt|LiBF4/PC@ PBI-COF/PTFE|Li) in an oven at 80℃ to balance the potential. 

The half-cell was scanned from 2 to 7 V with a potential sweep speed of 5 mV s1, 

and the measurement was performed at room temperature.

Theoretic calculation in details

In order to facilitate calculation, PBI-COFs was simplified into PBI-COF 

nanosheets composed of four adjacent hexagonal pores. The initial model consisted of 

four nanosheets, 20 LiBF4 molecules and 200 PC molecules, all of which were 

randomly distributed. The calculations of molecular dynamics simulation were 

performed for lithium-ion transport in PC solution and LiBF4/PC@ PBI-COF using 

the Forcite module. COMPASSⅢ was used as the molecular force field. The time 

step is 1 fs. The systems were brought to 298K and simulated for 2 ns in total.
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Fig. S1: SEM image of PBI-COF at different magnifications.

Fig. S2: HRTEM images of PBI-COF.
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Fig. S3: Optical photograph of LiBF4/PC@PBI-COF-X (X = 0, 50, 100, 150, 160), 

respectively.

Fig. S4: Pore size distribution of PBI-COF (black) and LiBF4/PC@PBI-COF (red).

Fig. S5: FT-IR spectra of LiBF4/PC@PBI-COF (green); PBI-COF (blue); PC (red) 

and LiBF4 (black).
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Fig. S6: High resolution Li 1s XPS spectra: (a) LiBF4/PC@PBI-COF and (b) PBI-

COF.

Fig. S7: Nyquist plots of PBI-COF at selected temperatures.
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Fig. S8: Nyquist plots of LiBF4/PC@PBI-COF at the selected temperatures of (a) 

303328 K and (b) 333353 K.

Fig. S9: Nyquist plots: (a, b) LiBF4/PC@PBI-COF-50, (c, d) LiBF4/PC@PBI- 

COF-100 at the selected temperatures.
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Fig. S10: (a) Temperature dependent conductivity, (b) Arrhenius plots of PBI-COF, 

LiBF4/PC@PBI-COF-50, LiBF4/PC@PBI-COF-100, LiBF4/PC@PBI-COF-150.

Fig. S11: Currenttime curves of Li|LiBF4/PC@Celgard2400|Li at 10 mV of 

polarization voltage.
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Fig. S12: SEM images: (a) surface morphology and (b) cross section of 

LiBF4/PC@PBI-COF/PTFE membrane.

Fig. S13: Combustibility test of Celgard2400 membrane, LiBF4/PC@Celgard2400 

membrane and LiBF4/PC@PBI-COF/PTFE, respectively.
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Fig. S14: (a) Illustration of the initial molecular dynamics (MD) model with 

LiBF4/PC, (b) MD snapshot of Li+ ion solvated shell in LiBF4/PC, (c) calculated 

mean square displacement (MSD) of Li+ and BF4
 ions as a function of the simulation 

time, (d) radial distribution functions (RDF) of Li+ in LiBF4/PC.
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Table S1: Summary of COF-based solid electrolyte properties

Materials Ionic conductivity / S cm−1 t+ Ref.
ICOFs 3.05 × 10-5 0.8 1

CD-COFs 2.7×10−3(30°C) / 2

Li-CON-TFSI 5.74×10−5 (30°C)
2.09 × 10−4 (70°C) 0.61 3

Li+ @TPB-BMTP-COF

6.04 × 10−6 (40°C)
2.85 × 10−5 (60°C)
1.66 × 10−4 (80°C)
5.49 × 10−4 (90°C)

/ 4

TpPa-SO3Li 2.70 × 10−5 (30°C) 0.90 5
CH3-Li-ImCOF 8.00 × 10−5 (30°C) 0.93 6

PEG-Li+@EB-COF-ClO4
1.93 × 10−5(30°C)
1.78 × 10−3(120°C) 0.60 7

Ge-COF-1 4.36 × 10−6 (20°C) 0.83 8

Li-CON-3
0.90 × 10−5 (−40°C)
3.21 × 10−5 (20°C)
1.17 × 10−4 (100°C)

0.92 9

Im-COF-TFSI@Li
2.92 × 10−5 (30°C)
4.64 × 10−4 (80°C)
4.04 × 10−3 (150°C)

0.62 10

dCOF-ImTFSI-60
9.74 × 10−5(RT)

1.03 × 10−3(80°C)
 7.05 × 10−3(150°C)

0.72 11

Q-COF 7.50 × 10−5 (30°C)
1.50 × 10−4 (60°C) 0.72 12

TPB-DMTP-COF 1.3 × 10−4(30°C)
1.26 × 10-3(60°C) 0.13 13

COF-PEG-B3-Li 3.4 ×10−6(60°C) 
1.5 × 10−3(200°C) 0.18 14

LPC-2
4.36 × 10-4(60°C)
4.90 × 10-3(100°C)
1.42 × 10-2(150°C)

0.58 15

TpPa–SO3H@PP 1.8 × 10-4 (30°C) 0.9 16
CNT@COF 1.85 × 10-3 (30°C) 0.78 17
LiO3S-COF2 5.47 × 10−5(30°C) 0.93 18

LiOOC-COF3 1.36 × 10-5(30°C) 
1.1 × 10−4(80°C) 0.91 19

COF-Cl@PP 7.8 × 10-4 (30°C) 0.82 20
COF-F@PP 7.6 × 10-4 (30°C) 0.87 20

mailto:dCOF-ImTFSI-60@li
mailto:CNT@cof
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