Supporting Information

Two-Stage Filamentary Mechanism in High-Performance Organic Resistive Switch

Arti Bisht^{1,2}, Nitish Saini^{1,2}, Komal Bhardwaj^{1,2}, Rachana Kumar^{1,2,3}, Ajeet Kumar^{1,2*}

¹CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India ²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India ³CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India *Corresponding Author Email: <u>kumarajeet@nplindia.org</u>

Table S1. A summary of resistive switching characteristics of organic-ReRAM devices and governing switching mechanisms.

structur	[s]	[Cycle]		range	behaviou	m	се	•
e				[v]	r		mea sure d	
Al/4C _z I PN- P ₃ HT/IT O	104	150	105	-6/3.3	Non- Volatile	Trapping and de- trapping of charges	-	1
Ag/Pect in/FTO	10 ⁸	27	104	3/-2.8	Non- Volatile	Filament ary switching	-	2
AI/D-A- A/ITO	10 ⁴	60	104	-3.5/1.8	Non- Volatile	Trap- based hole transfer	-	3
AI/F8B T/ITO	_ a)	-	10	-5/+5	Non- Volatile	The transition of trap- limited SCLC to trap-filled SCLC	-	4
Al/Carb azole/I TO	10 ³	-	10 ³	-1.5/+4	Non- Volatile	Formatio n and dissociati on of a charge- transfer state under the applied voltage	-	5
Mg/Pec tin/Mg	10 ⁶	160	20	Current bias	Nonvolati le	Filament ary switching	-	6
Au/PE DOT: PSS/Ag clusters /PMMA /ITO	104	50	10 ²	-10/+10	Nonvolati le	Filament ary switching	10	7
Ag/2D Imine/I TO	10 ³	200	10 ³	-3/+1	Flash	Filament ary switching	-	8
Au/ MQDs- PVP /ITO	10 ³	-	10 ²	-3.8/ -2.2	Flash and WORM	Trapping and De- trapping of charge carriers	20	9
AI/PVK/ ITO	104	15	10 ³	-2.7/+1.4	Flash	Filament ary switching	-	10
Cu/Par	104	10 ³	10 ³	-6/+1	Flash	Copper	8	11

ylene/l TO						filament formation		
Al/ PDA coated yarn	10 ⁶	-	10 ³	-1.5/+1.5	Nonvolati le	carbon- based electric	25	12
Ag/PVCi	5000	300	-	-1.8/+1.8	Nonvolati	Conductiv	10	13
/Au					le	e filament		
AI/PDI/I TO	10 ⁵	>250	10 ³	-1.5/+2	Non- Volatile	AI and oxygen vacancy filament s	10	Thi s wo rk

^{a)} No data in this publication.

Figure S1. Reproducible electroformation of three devices.

Figure S2. Temperature dependence of the resistance states of the device: (a) LRS, (b) LRS just after electroformation, (c) HRS.

Figure S3. (a) Compliance current (I_{CC}) dependent switching and stability of the filament of the Al/PVK/ITO device. state of the resistance after switching at (b) 15µA I_{CC} , (c) 25µA I_{CC} , (d) 30µA I_{CC} , (e) 150µA I_{CC} ,

Figure S4. (a), (b) switching voltage distribution for cumulative ~880 cycles measured from

10 different devices.

Figure S5. (a) I-V characteristic of the voltages measured after ~2years (b) Endurance of the device after ~2 years. (c) Switching voltage distribution of the device.

References:

- 1 and B. W. Wei Li, Huiwen Zhu, Tong Sun, Wenshan Qu, Xiaxia Fan, Zhixiang Gao*, Wei Shi*, *J. Phys. Chem. C*, 2022, **126**, 12897–12905.
- 2 N. Arshad, M. S. Irshad, M. S. Abbasi, S. Ur Rehman, I. Ahmed, M. Q. Javed, S. Ahmad, M. Sharaf and M. D. Al Firdausi, *RSC Advances*, 2021, **11**, 4327–4338.
- 3 S. Pan, Z. Zhu, H. Yu, W. Lan, B. Wei and K. Guo, *Journal of Materials Chemistry C*, 2021, **9**, 5643–5651.
- 4 M. N. Awais, M. Mustafa, M. N. Shehzad, U. Farooq, M. T. Hamayun and K. H. Choi, *Micro and Nano Letters*, 2016, **11**, 712–714.
- 5 W. Lin, H. Sun, S. Liu, H. Yang, S. Ye, W. Xu, Q. Zhao, X. Liu and W. Huang, *Macromolecular Chemistry and Physics*, 2012, **213**, 2472–2478.
- 6 and Y. L. Xiaoning Zhao, Jiaqi Xu, Dan Xie, Zhongqiang Wang, Haiyang Xu,* Ya Lin, Junli Hu, 2021, 2104023.
- 7 H. L. Park, M. H. Kim and S. H. Lee, *Advanced Electronic Materials*, 2020, **6**, 1–8.
- J. Liu, F. Yang, L. Cao, B. Li, K. Yuan, S. Lei and W. Hu, 2019, **1902264**, 1–7.
- 9 H. Mao, C. Gu, S. Yan, Q. Xin, S. Cheng, P. Tan and X. Wang, 2019, **1900493**, 1–8.
- 10 H. F. Ling, M. D. Yi, M. Nagai, L. H. Xie, L. Y. Wang, B. Hu and W. Huang, *Advanced Materials*, 2017, **29**, 1–9.
- 11 A. A. Minnekhanov, B. S. Shvetsov, M. M. Martyshov, K. E. Nikiruy, E. V Kukueva, M. Yu, P. A. Forsh, V. V Rylkov, V. V Erokhin, V. A. Demin and A. V Emelyanov, *Organic Electronics*, 2019, **74**, 89–95.
- 12 S.-B. J. Hagyoul Bae, Daewon Kim, Myungsoo Seo, Ik Kyeong Jin, K. Y. Hye Moon Lee, Soo-Ho Jung, Byung Chul Jang, Gyeongho Son and and Y.-K. C. Sung-Yool Choi, 2019, 1900151.
- 13 H. L. Park, M. H. Kim, M. H. Kim and S. H. Lee, *Nanoscale*, 2020, **12**, 22502–22510.