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Materials and Methods

Materials. All the chemical reagents were purchased from commercial sources (Aldrich, Alfa
Aesar, Energy Chemical and Adamas) and were used as received unless otherwise noted.

Characterizations. "H NMR and 3C NMR spectra were recorded on a 600 MHz BRUKER
spectrometer at room temperature using tetramethylsilane (TMS) as the internal standard. High-
resolution mass spectrometry (HRMS) data were collected on a Bruker maxis UHR-TOF mass
spectrometer in ESI positive mode. Fourier transform infrared (FT-IR) measurements were carried
out using a Bruker Tensor27 spectrophotometer. PXRD patterns were recorded on a Bruker D8
Advance instrument. X-ray single crystal diffraction data were collected on a Nonius Kappa CCD
diffractometer, using Mo Ka radiation (1) 0.71073 A (graphite monochromator). UV-vis spectra
were recorded on an Agilent Technologies Cary 3500 spectrometer. Emission spectra and the
absolute quantum yields were recorded on a Horiba FluoroMax Plus spectrofluorometer. CD
experiments were performed using a Chirascan CD spectrometer. CPL spectra and subsequently
derived glum values were recorded using an OLIS CPL Solo spectrofluorometer and the
globalworks software suite. PL lifetimes were measured using an FLS1000 fluorescence
spectrometer (Edinburgh) at room temperature. Scanning electron microscopy (SEM) was
performed using a Hitachi SU8220. Transmission electron microscopy (TEM) micrographs were
obtained using a Hitachi TEM HT 7800 operating at 80 kV acceleration voltage. The high-angle
annular dark-field (HAADF) imaging and EDX images were obtained using an FEI Titan cubed
Themis G2 300 microscope operated at 300 kV and equipped with a probe aberration corrector
and a monochromator. The samples were dropped onto a carbon-coated copper grid and dried.
Atomic force microscopy (AFM) experiments were performed on an Asylum Research Cypher
VRS (Oxford instruments) atomic force microscope equipped with a Scan Asyst-HR fast scanning
module and a Scan Asyst Air-HR probe (tip radius, 2 nm), utilizing peak force feedback control.
The CHCI;-MCH mixture solutions of the complexes were drop-casted onto the mica sheets for

the AFM sampling preparation.
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Scheme S1. Synthetic route of ligands L1 to L4.

Synthesis of key precursors. 4-Isocyanobenzenamine!, 6-phenyl-2,2’-bipyridine?, chloro(6-
phenyl-2,2’-bipyridine)platinum?, 10-camphorsulfonyl chloride*, and ketopinic acid* were
synthesized according to the previously reported procedures.

Synthesis of ligands L.1. To a 250 mL Schlenk flask, ketopinic acid (1.0 mmol, 1.0 equiv.),
4-isocyanobenzenamine (1.1 mmol, 1.1 equiv.), EDC-HCI (1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride, 1.1 mmol, 1.1 equiv.), DMAP (4-Dimethyl-aminopyridine, 0.7
mmol, 0.7 equiv.) and dry CH,Cl, (60 mL) were added. Then the mixture was stirred at R.T. for
24 hunder N,. The reaction mixture was then quenched by adding 50 mL water. The mixture was
extracted with CH,Cl, (3%x50 mL), the combined organic layer was washed with 1M aqueous HCI
(20 mL) and brine (200 mL). After drying over anhydrous Na,SO, and filtration, the solvent was

evaporated under vacuum to give the product as a pale-yellow solid.



D-L1. Yield 85%. 'H NMR (600 MHz, DMSO): 6 9.46 (s, 1H), 7.79 (d, J= 8.6 Hz, 2H), 7.51
(d, J=8.6 Hz, 2H), 2.54 (dt, J; = 18.5 Hz, J, = 3.8 Hz, 1H), 2.34 - 2.27 (m, 1H), 2.08 - 1.91 (m,
4H), 1.48 - 1.41 (m, 1H), 1.11 (s, 3H), 1.10 (s, 3H). 3C NMR (151 MHz, DMSO): ¢ 212.88,
167.69, 139.77, 126.79, 120.54, 67.21, 48.94, 43.25, 43.19, 26.71, 26.27, 20.73, 19.93. HRMS
(ESI) caled for [C7HgN,NaO,]*, 305.1260; found, 305.1255.

L-L1. Yield 84%. The characterization data of L-L.1 was in consistent with those of D-L1.

Synthesis of ligand L-2. To a 100 ml Schlenk flask equipped was added 4-isocyanoaniline
(7.2 mmol, 0.9 equiv.), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (8.8 mmol,
1.1 equiv.) and dry CH,Cl, (30 mL) under N,. Then the mixture was stirred at 0 °C for 15 min
before adding the solution of 10-camphorsulfonyl chloride (7.98 mmol, 1.0 equiv.) in CH,CI, (8
mL). Then the final solution was stirred at 0 °C for 1 h. Subsequently 35 mL EtOAc was added to
precipitate triethylammonium hydrochloride. The reaction mixture was then quenched by adding
water, 1 M aqueous HCI and brine. After drying over anhydrous Na,SO,, the solvent was
evaporated under vacuum. The product was obtained as a pale-yellow solid.

D-L2. Yield 88%. 'H NMR (600 MHz, DMSO): § 10.32 (s, 1H), 7.56 (d, J = 8.8 Hz, 2H),
7.30 (d, J=8.8 Hz, 2H), 3.43 (d, /= 15.0 Hz, 1H), 3.07 (d, J = 15.0 Hz, 1H), 2.37 - 2.29 (m, 2H),
2.06 (t,J=4.6 Hz, 1H), 1.98 - 1.90 (m, 2H), 1.58 - 1.52 (m, 1H), 1.45 - 1.38 (m, 1H), 0.99 (s, 3H),
0.76 (s, 3H). PC NMR (151 MHz, DMSO): 6 213.98, 139.72, 127.59, 118.82, 57.74, 48.17, 47.66,
42.02, 41.93, 26.17, 24.62, 19.27. HRMS (ESI) calcd for [C;7H,oN,NaO;S] ¥, 355.1087; found,
355.1077.

L-L2. Yield 46%. The characterization data of L-L2 was in consistent with those of D-L2.

Synthesis of ligands L3. The procedures were similar to that of complex L1, except that 4-
isocyanobenzenamine was replaced by 4-ethynylaniline (1.1 mmol, 1.1 equiv.) to give the product
a pale-yellow solid.

D-L3. Yield 85%. 'H NMR (600 MHz, CDCl;): § 9.81 (s, 1H; NH), 7.59 (d, /= 8.6 Hz, 2H;
CeHy), 7.45 (d, J = 7.08 Hz, 2H; C¢Hy), 3.04 (s, 1H; CH,), 2.63 - 2.53 (m, 2H; CH,), 2.29 - 1.98
(m, 3H; CH,), 1.76 - 1.66 (m, 1H; CH,), 1.53 - 1.44 (m, 1H; CH,), 1.34 (s, 3H; CHs), 1.03 (s, 3H;
CH;). 3C NMR (151 MHz, CDCls): ¢ 218.01, 167.80, 138.48, 133.00, 119.92, 117.67, 83.67,
64.95, 50.86, 43.88, 43.33, 29.23, 28.04, 21.26, 20.54. HRMS (ESI) calcd for [C1gH{9NNaO,]*,
304.1308; found, 304.1300.

L-L3. Yield 86%. The characterization data of L-L.3 was consistent with those of D-L3.



Synthesis of ligand L4. The procedures were similar to that of complex L2, except that 4-
isocyanobenzenamine was replaced by 4-ethynylaniline (7.2 mmol, 0.9 equiv.) to give the product
as pale-yellow solid.

D-L4. Yield 78%. '"H NMR (600 MHz, CDCl5): 6 7.88 (s, 1H), 7.46 (d, J=7.2 Hz, 2H), 7.25
(d, J=8.5 Hz, 2H), 3.31 (d, J= 15.3 Hz, 1H), 3.07 (s, 1H), 2.89 (d, /= 15.3 Hz, 1H), 2.48 - 2.41
(m, 1H), 2.21 - 2.13 (m, 2H), 2.12 - 2.01 (m, 2H), 1.97 (d, J = 18.8 Hz, 1H), 1.51 - 1.46 (m, 1H),
0.96 (s, 3H), 0.84 (s, 3H). BC NMR (151 MHz, DMSO): 6217.71, 138.27,133.47,121.48, 119.12,
83.13, 77.56, 59.87, 49.64, 49.34, 43.23, 42.96, 27.80, 27.20, 20.01, 19.45. HRMS (ESI) calcd for
[C1sH1NNaO;S]*, 354.1134; found, 354.1132.

L-L4. Yield 75%. The characterization data of L-L.4 was in consistent with those of D-L4.
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Scheme S2. Synthetic route of Pt-1 to Pt-4.

Synthesis of Pt-1. A suspension of [Pt(C*N”N) Cl1] (0.1 mmol, 1.0 equiv.) and AgOTf (0.105
mmol, 1.05 equiv.) in acetonitrile (10 mL) was refluxed for 4 h. After cooled to R.T., and the
corresponding CH,Cl, solution (2 mL) of chiral isocyanide ligand L.1 (0.1 mmol, 1.0 equiv.) was



added. After the mixture was further stirred at R.T. for 12 h in darkness, the solution was filtered
through celite, and the celite pad was washed with CH,Cl,. The product was obtained by the
evaporation of solvents and washed with H,O and Et,0, respectively. The product was afforded
as dark-red solid.

D-Pt-1. Yield 60%. '"H NMR (600 MHz, CD;CN): 6 9.46 (s, 1H), 8.18 (d, J = 5.0 Hz, 1H),
791 (t,J=7.7Hz, 1H), 7.70 (t,J= 7.9 Hz, 3H), 7.65 (t, /= 7.8 Hz, 1H), 7.38 (d, /= 7.7 Hz, 1H),
7.33 (t,J=3.84 Hz, 1H), 7.30 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.1 Hz, 1H), 6.94 (d, J=7.7 Hz,
1H), 6.81 (t,J=8.5 Hz, 1H), 6.74 (t, J= 5.8 Hz, 1H), 6.68 (d, /= 7.3 Hz, 1H), 2.62 (dt, J; = 18.2
Hz, J, =3.9 Hz, 1H), 2.49-2.45 (m, 1H), 2.21-2.15 (m, 3H), 2.07 (d, J = 18.2 Hz, 2H), 1.84-1.77
(m, 1H), 1.56-1.49 (m, 1H), 1.26 (s, 3H), 1.07 (s, 3H). 3C NMR (151 MHz, CD;CN): 6 216.92,
168.95, 153.32, 143.42, 141.84, 141.16, 138.53, 137.14, 133.00, 129.78, 128.38, 126.69, 125.00,
121.34, 120.87, 120.45, 65.90, 51.43,43.99, 43.85, 28.92, 27.62, 20.70, 20.61. HRMS (ESI) calcd
for [Cs3Hy9N4O,Pt]", 708.1936; found, 708.1924. Elemental analysis calcd (%) for
C34H0F3N4OsPtS-2H,0: C, 45.69; H, 3.72; N, 6.27; S, 3.59. Found: C, 45.46; H, 4.08; N, 6.44, S
3.82.

L-Pt-1. Yield 68%. The characterization data of L-Pt-1 was in consistent with that of D-Pt-1.
Synthesis of Pt-2. The procedures were similar to that of complex Pt-1, except that L1 was
replaced by L2 (0.1 mmol, 1.0 equiv.) to give the product as a dark-red solid.

D-Pt-2. Yield 72%. '"H NMR (600 MHz, CD;CN): 6 8.39 (s, 1H), 8.09 (d, /= 5.0 Hz, 1H),
7.84 (t,J=7.6 Hz, 1H), 7.65 - 7.57 (m, 2H), 7.35 - 7.29 (m, 3H), 7.26 (d, J = 8.4 Hz, 3H), 7.17
(d,/=7.9 Hz, 1H), 6.86 (d, /= 7.4 Hz, 1H), 6.74 (t,J= 7.0 Hz, 1H), 6.67 (t,J= 6.8 Hz, 1H), 6.59
(d,J =7.1 Hz, 1H), 3.55 (d,J=15.6 Hz, 1H), 3.14 (d, /= 15.6 Hz, 1H), 2.42 - 2.33 (m, 2H), 2.09
-2.02 (m, 1H), 1.80 - 1.71 (m, 1H), 1.51 - 1.44 (m, 1H), 1.05 (s, 3H), 0.84 (s, 4H). 3C NMR (151
MHz, CD;CN): 6 216.43, 156.58, 154.89, 153.29, 146.54, 143.42, 141.85, 141.37, 137.14, 133.00,
129.76, 128.93, 126.66, 125.13, 120.43, 59.14, 49.84, 48.96, 43.22, 4291, 31.91, 27.10, 26.15,
22.95,19.64, 19.39, 13.97. HRMS (ESI) calcd for [C33H;3,N4O5PtS]*, 758.1762; found, 758.1752.
Elemental analysis caled (%) for C34H31F3N4O6PtS,-2H,0: C, 45.69; H, 3.72; N, 6.27; S, 3.59.
Found: C, 45.42; H, 3.97; N, 6.54, S 3.62.

L-Pt-2. Yield 64%. The characterization data of L-Pt-2 was in consistent with that of D-Pt-2.
Synthesis of Pt-3. To a 250 ml Schlenk flask equipped were added [Pt(C*"N”N) CI] (0.11
mmol, 1.0 equiv.), chiral alkynyl ligand L3 (0.14 mmol, 1.3 equiv.) and Cul (0.011 mmol, 0.1



equiv.). The mixture was put under three vacuum-N, cycles before adding degassed CH,Cl, (15
mL) and i-Pr,NH (5 mL). After stirring at room temperature for 24 h in darkness, the reaction
mixture was concentrated under reduced pressure. Then the crude product was purified by
chromatography column (silica gel, 100-200 mesh, CH,Cl,) and washed with Et,O and Hexane
solution.? The compound was obtained as brown orange powder.

D-Pt-3. Yield 45%. "H NMR (600 MHz, CDCl3): 6 9.68 (s, 1H), 9.12 (d, /= 5.0 Hz, 1H), 7.95
(t,J=7.7Hz,2H), 7.85(d,J=7.8 Hz, 1H), 7.73 (t,J= 7.9 Hz, 1H), 7.55 (d, J= 8.2 Hz, 3H), 7.53
- 7.44 (m, 4H), 7.31 (d, J=7.6 Hz, 1H), 7.18 (t, /= 7.4 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 2.68 -
2.56 (m, 2H), 2.26 - 2.18 (m, 1H), 2.13 (t, /= 5.3 Hz, 1H), 2.06 (d, /= 18.6 Hz, 1H), 1.76 - 1.69
(m, 1H), 1.52 - 1.49 (m, 1H), 1.36 (s, 3H), 1.05 (s, 3H). 3C NMR (151 MHz, CDCl;): 6 217.69,
168.30, 152.10, 140.64, 140.58, 132.67, 131.82, 129.22, 125.76, 124.67, 124.54, 120.87, 119.88,
119.73, 118.26, 66.63, 51.00, 44.30, 44.23, 29.16, 28.02, 21.14, 20.95. HRMS (ESI) calcd for
[C34H29N3NaO,Pt]*,  729.1803; found, 729.1799. Elemental analysis calcd (%) for
C3,H,9N;0,Pt-0.2CH,Cl,: C, 56.76; H, 4.09; N, 5.81. Found: C, 56.62; H, 4.29; N, 5.65.

L-Pt-3. Yield 45%. The characterization data of L-Pt-3 was in consistent with that of D-Pt-3.

Synthesis of Pt-4. The procedures were similar to that of complex Pt-3, except that L3 was
replaced by L4 (0.1 mmol, 1.0 equiv.) to give the product as brown orange powder.

D-Pt-4. Yield 43%. '"H NMR (600 MHz, CDCl;): 6 9.20 (d, J = 5.4 Hz, 1H), 8.02 (t, J= 7.8
Hz, 1H), 7.96 (d, J= 7.2 Hz, 1H), 7.89 (d, /= 7.8 Hz, 1H), 7.80 (t, /= 7.8 Hz, 1H), 7.66 (s, 1H),
7.59 (d, J= 7.8 Hz, 1H), 7.57 - 7.50 (m, 4H), 7.36 (d, J= 7.8 Hz, 1H), 7.21 (d, J = 8.5 Hz, 2H),
7.18 (d, J=17.4 Hz, 1H), 7.06 (t, /= 7.6 Hz, 1H), 3.40 (d, /= 15.3 Hz, 1H), 2.85 (d, /= 15.3 Hz,
1H), 2.50 - 2.43 (m, 1H), 2.24 - 1.93 (m, 5H), 1.51 - 1.45 (m, 1H), 0.96 (s, 3H), 0.88 (s, 3H). 13C
NMR (151 MHz, CDCls): 6 217.42, 165.87, 158.18, 154.61, 151.85, 146.82, 142.33, 138.81,
134.70, 132.89, 131.69, 127.66, 124.60, 123.91, 122.31, 118.57, 117.76, 77.37, 77.16, 76.95,
61.06, 59.95, 49.31, 48.94, 43.31, 43.06, 31.74, 29.85, 27.97, 27.28, 22.80, 20.12, 19.54, 14.25,
1.16. HRMS (ESI) calcd for [C34H31N3;NaO5PtS]*, 779.1629, found, 779.1605. Elemental analysis
calcd (%) for C34H3N;O5Pt-2H,0: C, 51.51; H, 4.45; N, 5.30; S, 4.04. Found: C, 51.56; H, 4.75;
N, 5.43; S, 4.32.

L-Pt-4. Yield 38%. The characterization data of L-Pt-4 was in consistent with that of D-Pt-4.
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Figure S14. 3C NMR spectrum of D-Pt-1 in CD;CN.
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Figure S16. '"H NMR spectrum of D-Pt-2 in CD;CN.
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Figure S25. FT-IR spectra of complexes Pt-1~Pt-4.
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Figure S26. Single crystal structures of (a) L2 (CCDC 2209736), (b) L3 (CCDC 2209733) and
(c) L4 (CCDC 2209735). Green dotted lines, intramolecular N-H:--O=C interactions.
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(b)

Figure S27. Dihedral angles in the X-ray crystal structure of ligands (a) L2 and (b) L4.

Figure S28. Molecular packing of ligand L4.
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Table S1. Crystallographic data of single crystal for L2-L4.

D-1.2 L-1L3 L-1L4

(CCDC 2209736) (CCDC 2209733) (CCDC 2209735)
Empirical formula C]7H20N203S C]gH]gNOZ C18H21N03S
Formula weight 332.41 281.34 331.42
Temperature/K 250.00 153.00 153.15
Crystal system triclinic orthorhombic orthorhombic
Space group P1 P2,2,24 P2,2:24
a/A 7.1344(6) 11.2317(5) 8.7823(6)
b/A 10.1798(9) 11.5042(5) 10.1497(6)
c/A 11.5186(10) 11.6690(5) 18.5221(12)
o/° 105.967(2) 90 90
/e 92.665(2) 90 90
v/° 91.935(2) 90 90
Volume/A3 802.47(12) 1507.77(11) 1651.02(18)
Z 2 4 4
Pealcg/cm’? 1.376 1.239 1.333
wmm-! 1.936 0.640 1.862
F(000) 352.0 600.0 704.0
Crystal size/mm3 0.4x0.3x0.1 0.5x04x0.3 0.5x04x0.3
Radiation CuKo (A =1.54178) CuKa (A=1.54178) CuKa (A=1.54178)
20 range for data 14.402 to 136.684 15.78 to 136.344 13.332 t0 136.518
collection/

Index ranges
Reflections collected
Independent reflections

Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c
@]

Final R indexes [all data]

Largest diff. peak/hole / e
A3

Flack parameter

8<h<8,-12<k<12,-
13<1<13

21268

5496 [Riy = 0.0316,
Rgigma = 0.0281]
5496/3/419

1.028

R, = 0.0289, WR, =
0.0788

R, =0.0290, wR, =
0.0790

0.36/-0.43

0.088(6)

-13<h<13,-13<k<
13,-14<1< 14
20678

2699 [Rip = 0.0245,
Ryigma = 0.0130]
2699/0/196

1.075

R, = 0.0262, wR, =
0.0667

R, =0.0262, wR, =
0.0668

0.16/-0.13

0.07(3)

-10<h<10,-12<k<
12,-22<1<22
23753

2975 [Rin = 0.0471,
Ryigma = 0.0265]
2975/0/211

1.104

R,=0.0306, wR, =
0.0822

R, =0.0307, wR, =
0.0823

0.39/-0.35

0.10(2)
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Figure S29. Optimized ground-state geometries of Pt-1 (a) and Pt-2 (b) in CH3CN at the DFT
level of theory.

36



@ 15 — MeCN | — (b) — MeCN

41 . —CHel, | o — CHCI,

o > — PhMe ; — PhMe

—MeR & — MCH
§ 3 0.05 o
< L
E 0.00 E
Y 27 a0 500 60 700 | P
— N
W ©
1 £
e
o
pd

O- T 1 T T 1 T 1 T T
300 400 500 600 700 500 600 700 800
Wavelength (nm) Wavelength (nm)

Figure S30. (a) UV-vis and (b) Emission spectra (excited at 420 nm in MeCN and CHClI;, and
450 nm in toluene and MCH) of Pt-1 in different solvents. Inset: the expanded UV-Vis absorption
spectra of Pt-1 beyond 400 nm.
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Figure S31. (a) UV-vis and (b) Emission spectra excited at 420 nm of Pt-2 in different solvents.
Inset: the expanded UV-Vis absorption spectra of Pt-2 beyond 400 nm.

37



Normalized Intensity (a.u.)

300 400 500 600 700 560 630 700 770 840
Wavelength (nm) Wavelength (nm)

Figure S32. (a) UV-vis and (b) Emission spectra excited at 420 nm of Pt-3 in different solvents.
Inset: the expanded UV-Vis absorption spectra of Pt-3 beyond 400 nm.
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Figure S33. (a) UV-vis and (b) Emission spectra excited at 420 nm of Pt-4 in different solvents.
Inset: the expanded UV-Vis absorption spectra of Pt-4 beyond 400 nm.
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Table S2. Natural Transition Orbitals (NTOs) Representing the Lowest Energy Transitions

Excited
states and
properties

Hole

Electron

S1
Pt-1 442 nm
£=0.0009

S2
411 nm
f=0.0561

S1
Pt-2 443 nm
£=0.0009

S2
397 nm
f=0.156

S1
Pt-3 580 nm
£f=0.035

S2
466 nm
£=0.0045
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Pt-4

S1
567 nm
f=0.0126

S2
465 nm
£=0.0039
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Table S3. Natural transition orbitals (NTOs) representing the major transitions contributing to the
absorption bands between 280 nm-400 nm.

Excited
states
and
propertie
S

Hole

Electron

Pt-

S4
354 nm
f=0.184

S5
338 nm
f=0.134

S8
306 nm
f=0.215

S11
295 nm
f=0.731

Pt-

S4
354 nm
f=0.174

S6
338 nm
f=0.150
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Pt-
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S15
310 nm

0.4016

S16
309 nm

0.1907

Pt-
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Figure S35. (a) UV-vis and (b) Emission spectra excited at 420 nm of Pt-2 in versus MCH fraction
in the MCH-CHC]l; mixture, and photographs of complex Pt-2 in the CHCl;-MCH mixture under
visible light (c) and 365 nm UV light (d) irradiation.
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in the MCH-CHC]l; mixture, and photographs of complex Pt-3 in the CHCl;-MCH mixture under
visible light (¢) and 365 nm UV light (d) irradiation.
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Figure S37. (a) UV-vis and (b) Emission spectra excited at 420 nm of Pt-4 in the MCH-CHCl;
mixture of versus MCH fraction, and photographs of complex Pt-4 in the CHCl;-MCH mixture
under visible light (c) and 365 nm UV light (d) irradiation.
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Table S4. Photophysical and chiroptical data for complexes Pt-1, Pt-2, Pt-3 and Pt-4.

. Electronic absorption Emission CPL
Complex  Solution Jima /0 (&/10° M- cm!) Je/im (tins) DL 5 St
CHCI, 279(3'98)’(1336%)(1'67)’ 354 528 (536.7) 004 531 X0
MeCN 276 (4'40)’(3382)(1'82)’ 350 528 (337) 0.01
PhMe 338 (0.54), 455 (0.10) 660 (479) 0.26
Pt 520(497)
Cﬁ%yé\{[éﬁH 278 (3.59),( iﬁ) )(1.54), 34 uoaean 67 006
> 6 : (351.3)
CHCL:MCH 276 (2.54), 340 (1.14), 540
v 28] 02 689 (228.5) 009 710 0.013
269 (4.03), 334 (1.70), 354 1x10
CHC, S s o) 527 (514.7) 004 532 X
267 (4.19), 330 (1.71), 350
MeCN o 28 0,08 524 (328) 0.01
Pt-2 PhMe 341 (0.70), 539 (0.13) 683 (289) 0.20
CHCI:MCH 266 (2.89), 337 (1.45), 542
[V/V, 634] (0.21) 680 (492) 0.22
CHCL:MCH 259 (3.02), 339 (1.39), 540
28] 029 634 (251) 0.14 694  0.023
293 (4.00), 311 (3.22), 339
CHCL (1 60), 374 (1.00), 460 (0.48) 601 (60) 0.02
289 (4.08), 308 (3.15), 330
MeCN (1 68), 363 (1.04), 441 (0.56) 604 (23) 0.01
312 (3.48), 343 (1.50), 382
Pe-3 PhMe (0.87), 476 (4.48) 612 (59) 0.02
CHCL:MCH 288 (3.18), 340 (1.30), 377 604 () 001
[VIv, 6:4]  (0.84), 448 (0.48), 473 (0.46) :
_ 290 (2.93), 309 (2.52), 344
Cﬁ%é\/g}l (1.15), 385 (0.71), 458 (0.43), 611 (50) 0.01
, 2 494 (0.40)
284 (3.85), 338 (1.32), 370
CHCL, (0.87). 440 (0.45), 469 (0.41) 592 (66) 0.02
284 (4.01), 329 (1.40), 361
MeCN 092), 133 (0.51) 585 (76) 0.01
344 (1.31), 383 (0.79), 459
Pt-4 PhMe 000, 483 (0.4 601 (-) 0.02
CHCI:MCH 284 (3.93), 340 (1.39), 374
[Viv,6:4]  (0.93), 445 (0.54), 473 (0.51) 600 (-) 0.02
CHCL:MCH 284 (2.61), 339 (1.22), 376
[viv, 2:8] (0.82), 456 (0.50) 602 (-) 0.01
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Figure S38. CD spectra of D/L-Pt-1 in the MCH-CHCI; mixture of versus MCH fraction.
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Figure S39. CD spectra of D/L-Pt-2 in the MCH-CHCI; mixture of versus MCH fraction.
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Figure S40. CD spectra of D/L-Pt-3 in the MCH-CHCI; mixture of versus MCH fraction.
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Figure S41. CD spectra of D/L-Pt-4 in the MCH-CHCI; mixture of versus MCH fraction.
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Figure S42. SEM images of D/L-Pt-1 self-assemblies prepared in MCH-CHCIl; with different
MCH ratio at R.T. without aging.
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Figure S43. Representative TEM images for L-Pt-1 self-assemblies prepared in MCH-CHCls.
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Figure S44. AFM images of L-Pt-1 self-assemblies prepared in 40% MCH- CHCl; solution (a)
at R.T. without aging, and (c) after aging for 6 h at 288 K. (b) Height profile of the nanoring at the
selected cross-section. (d) The HAADF-STEM image and corresponding EDS mapping of L-Pt-

1 self-assemblies.
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Figure S45. (a) SEM images of D-Pt-1, (b) L-Pt-1, (c) HAADF-STEM image and (d)
corresponding EDS mapping of D-Pt-1 self-assemblies prepared in MCH-CHCIl; with 40% MCH
ratio after aging for 6 h at 288 K.
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Figure S46. SEM images of D-Pt-1 self-assemblies dendritic nanotwists prepared in 40% MCH-
CHCI; solution after aging for 12 h (a-c) at 288 K; (d-f) prolong the aging time at R.T.
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Figure S47. SEM images of L-Pt-2 self-assemblies prepared in MCH-CHCl; with different MCH

ratio without aging. No obvious difference was observed for the SEM images of D-Pt-2.
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Figure S48. SEM images of L-Pt-2 self-assemblies prepared in MCH-CHCIl; with 40% MCH

after various aging for a certain time.
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Figure S49. SEM images of L-Pt-3 self-assemblies prepared in MCH-CHCl; with different MCH

ratio.
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Figure S50. SEM images of L-Pt-4 self-assemblies prepared in MCH-CHCI; with different MCH

ratio.
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Table S5. Thermodynamic parameters describing the self-assembly of Pt-1 in TCE/MCH (v/v,
3/7, ¢ =50 uM) at different temperature.

K, K. G AH AS AG
(kJ/mol) (J/mol-K) (kJ/mol)
9.94x10 " 17.35 120x10° -39.59 _112.87 -7.08
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Figure S51. Temperature-dependent "H NMR spectra of Pt-1 in CD;CN.
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Figure S52. Temperature-dependent 'H NMR spectra of Pt-2 in CD;CN.
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Figure S53. Concentration-dependent "H NMR spectra of Pt-2 in CDCl; at 298 K.
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Figure S54. Concentration-dependent "H NMR spectra of Pt-3 in CDCl; at 298 K.
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Figure S55. Concentration-dependent "H NMR spectra of Pt-4 in CDCl; at 298 K.
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Figure S56. PXRD patterns of nanotwist and microbelt assemblies for Pt-1.

The powder X-ray diffraction (PXRD) patterns of Pt-1 display relatively high crystallinity for
nanotwist and microbelt structures (Fig. S56). Based on Bragg’s equation, the d spacing changed
into 1.89 and 1.82 nm for the nanotwists and microbelts, respectively. Based on the DFT
calculation, the molecular length of Pt-1 was estimated to be 2.01 nm. A slightly smaller d value
as compared to the extended molecular length is assignable to monolayer structure.® The changes
of these reflections indicate that the d spacing are slightly compressed from nanotwists to form

microbelts.
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