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Materials and chemicals

All reactions were carried out under a nitrogen atmosphere. All reagent-grade chemicals were
obtained from commercial suppliers and were used as received unless otherwise stated. Anhydrous
dimethylformamide (DMF), Toluene, and a,a,a-trifluorotoluene were purchased from Merck and
used as received. Analytical thin layer chromatography was performed using silica gel 60 F254
pre-coated plates (Merck) with visualization by potassium permanganate. Column
chromatography was performed on silica gel (0.043-0.063 mm).

Characterization

Solution '"H NMR, 3C NMR, "F and '"”Sn NMR spectra were recorded on Bruker Avance I 300
MHz and Avance III 600 MHz spectrometers at CESAMO (Bordeaux University). Chemical shift

values are reported in ppm with reference to solvent residual signals. Mass spectra were also
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performed by CESAMO (Bordeaux, France) on a Qexactive mass spectrometer (Thermo). The
instrument is equipped with an electrospray (ESI) source and spectra were recorded in the negative
mode. The spray voltage was maintained at 3200 V and capillary temperature set at 320°C.
Samples were introduced by injection through a 20 puL sample loop into a 300 pL/min flow of
methanol from the LC pump. MALDI-MS spectra were performed as well by CESAMO
(Bordeaux, France) on an Autoflex maX TOF mass spectrometer (Bruker Daltonics, Bremen,
Germany) equipped with a frequency tripled Nd:YAG laser emitting at 355 nm. Spectra were
recorded in the positive-ion mode using the reflectron and with an accelerating voltage of 19 kV.
The acquisition was made in LDI mode. Samples were dissolved in chloroform at 10 mg/mL. One

to two microliters of the obtained solution were deposited onto the sample target and vacuum-

dried.

SYNTHESIS

Synthesis of (CsF13C2H4)4Sn (1b). This was prepared as mentioned in the literature with some
modifications.! A Grignard reagent was prepared by stirring a mixture of magnesium turnings (30
mmol, 0.73 g) in dry Et20 (30 mL) for 1 h at ambient temperature and under nitrogen. A solution
of CsF13C2H4l (11.85 g, 25 mmol) in dry E,O (30 mL) with two drops of 1,2-dibromoethane was
slowly added at 0°C. The reaction mixture was stirred for 3 h at this temperature before dry Et2O
(30 mL) was added. SnCl4 (1.3 g, 5 mmol) dissolved in dry toluene (20 mL) was added dropwise,
after which the mixture was heated under reflux for 4 days. The reaction was hydrolyzed by the
slow addition of water (30 mL), and the mixture was filtered through Celite and then washed with
pentane. The filtrates were extracted with ethyl acetate. The organic phase was washed twice with

water, dried over MgSOg4, and concentrated by rotary evaporation. The crude product was finally
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purified by the classical column chromatography on silica gel using hexane as an eluent to give 1b
(40% yield) as a colorless oil.

"HNMR (300.2 MHz, CDCl3) d 1.13 (t, 8H, *Ju -1 = 8 Hz, %Jsn n = 52 Hz), 2.29 (tt, 8H, *Jr =18
Hz, 3Jin= 8 Hz); IF NMR (282.4 MHz, CDCI3) 6 — 80.94 (t, 12F), —116.71 (m, 8F), —122.01
(m, 8F), —122.98 (m, 8F), —123.68 (m, 8F), —126.27 (m, 8F); *C NMR (75 MHz, CDCls) 6 -1.67
(s, C-Sn), 27.44 (t, 2Jcr= 23 Hz); ''?Sn NMR (223.8 MHz, CDCl3) ¢ 10.50.

HRMS (ESI") m/z theoretical for C32H16CIF52Sn = 1542.9136, found [M+CI] = 1542.9104.

Synthesis of (CsF13C2H4)3SnCl (2b). As stated in the literature,? phenyltin trichloride (1.87 g, 6.22
mmol) solution in dry toluene (12 mL) was added dropwise to the Grignard reagent
CeF13C2HaMgl, prepared as previously mentioned. The reaction was refluxed for 4 h and stirred
overnight at ambient temperature. The reaction was hydrolyzed by the slow addition of NH4Cl
solution and then filtrated through a Celite pad. The organic phase was washed with 5% Na>S>03
solution and deionized water, dried over MgSOs, and concentrated by rotary evaporation. The
crude product was finally purified by the classical column chromatography on silica gel using

hexane to give (C¢F13C2H4)3SnPh (48.7% yield) as a colorless oil.

'"H NMR (300.2 MHz, CDCl3) 8 1.30 (t, 6H, 3Jii_11 = 8 Hz, 2Jsa11 = 55 Hz), 2.31 (tt, 6H, 3Jr= 18
Hz, 3Juu= 8 Hz), 7.39 (m, 5 H); '°F NMR (282.4 MHz, CDCL) & — 80.90 (t, 9F), ~116.56 (m,
6F), —122.00 (m, 6F), —122.96 (m, 6F), —123.51 (m, 6F), ~126.25 (m, 6F); '°*C NMR (75 MHz,
CDCL3) 8 -1.56 (s, Jc sa= 170 Hz), 27.65 (t, 2Jc_r = 23 Hz), 136.40 (1C, quaternary), 135.95 (2C,
2Jsnc= 17 Hz), 129.53 (1C, “Jsnc = 6 Hz) 128.95 (2C, 3Jsn.c = 25 Hz); ''%Sn NMR (223.8 MHz,

CDCl) & -28.64.
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TMSCI (7.5 mmol, 0.95 mL) was added at 0 °C to a CCls solution (15 mL) containing
(CeF13C2H4)3SnPh (5 mmol, 6.18 g) and dry MeOH (25 mmol, 1 mL). The reaction mixture was
stirred overnight at ambient temperature.! The solution was evaporated, and the crude product was
subjected to column chromatography on silica gel using dichloromethane as an eluent to give 2b
as a colorless oil (5.49 g, 40%).

"HNMR (300.2 MHz, CDCl3) 8 1.52 (t, 6H, *Ji-u = 8 Hz, %Jsn 1 = 55 Hz), 2.46 (tt, 6H, *Jr 1= 18
Hz, *Jun= 8 Hz); 'F NMR (282.4 MHz, CDCls) & — 80.89 (t, 9F), —116.02 (m, 6F), —121.95 (m,
6F), —122.93 (m, 6F), —123.49 (m, 6F), —126.22 (m, 6F); 3C NMR (75 MHz, CDCl3) & 6.26 (s,
Jc_sn= 190 Hz), 26.85 (t, Jc_r = 23 Hz); "?Sn NMR (223.8 MHz, CDCls) § 123.98.

HRMS (MALDI-TOF) m/z theoretical for CosHi2CIF30NaSn = 1218.892, found [M+Na]® =
1218.956.

Figure S1. "H NMR spectrum of 1a (300.2 MHz, CDCls).
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Figure S2. F NMR spectrum of 1a (282.4 MHz, CDCl3).
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Figure S3. 3C NMR spectrum of 1a (75 MHz, CDCI3).
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Figure S4. Sn NMR spectrum of 1a (223.8 MHz, CDCl;).
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Figure S5. ESI spectrum of 1a in CHCl;.
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Figure S6. 'H NMR spectrum of 1b (300.2 MHz, CDCl5).
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Figure S7. F NMR spectrum of 1b (282.4 MHz, CDCI3).
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Figure S8. 13C NMR spectrum of 1b (75 MHz, CDCls).
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Figure S9. ?Sn NMR spectrum of 1b (223.8 MHz, CDCl3).
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Figure S11. "H NMR spectrum of (C4F9C2H4)3SnPh (300.2 MHz, CDCI).
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Figure S13. 3C NMR spectrum of (C4F9oC2H4)3SnPh (75 MHz, CDCl3).
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Figure S14. '?Sn NMR spectrum of (CsF9C2H4)3SnPh (223.8 MHz, CDCI3).
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Figure S15. '"H NMR spectrum of 2a (300.2 MHz, CDCI;).
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Figure S16. ’F NMR spectrum of 2a (282.4 MHz, CDCl3).
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Figure S17. 3C NMR spectrum of 2a (75 MHz, CDCIl3).
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Figure S18. ?Sn NMR spectrum of 2a (223.8 MHz, CDCls).
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Figure S19. ESI spectrum of 2a in CHCL.
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Figure S20. 'H NMR spectrum of (CsF13C2H4)3SnPh (300.2 MHz, CDCI3).
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Figure S21. F NMR spectrum of (CeF13C2H4)3SnPh (282.4 MHz, CDCl3).
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Figure S22. 3C NMR spectrum of (C¢F13C2H4)3SnPh (75 MHz, CDCI3).
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Figure S23. '”Sn NMR spectrum of (C¢F13C2H4)3SnPh (223.8 MHz, CDCls).
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Figure S24. '"H NMR spectrum of 2b (300.2 MHz, CDCl5).
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Figure S25. F NMR spectrum of 2b (282.4 MHz, CDCI3).
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Figure S26. 3C NMR spectrum of 2b (75 MHz, CDCl3).
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Figure S27. 1Sn NMR spectrum of 2b (223.8 MHz, CDCl3).
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Figure S28. MALDI-TOF spectrum of 2b in CHCls.
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Figure S29. Characteristic tetragonal phase XRD pattern of pristine and modified MAPI samples.
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Figure S30. AFM images of pristine and modified MAPI surfaces.
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Figure S31. Normalized Abs spectra of pristine and modified MAPI surfaces.
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Figure S32. Overview XPS spectra measured for pristine and modified MAPI surfaces.
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Figure S33. XPS spectra of fitted F 1s, B 1s-1 4s, fitted CI 2p, Pb 4f and I 3d for pristine and
different passivated perovskite surfaces.
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Figure S34. Contact angle measurements of water on pristine and modified perovskite surfaces.

Table S1. Calculated molecular dipole moments (#) of 1 —3.2

Compound la 1b 2a 2b 3

u (Debye) 0.384 0.301 0.824 0.780 <0.001

*Calculated using a PM3 semi-empirical Hamiltonian at the MM+ geometry.

ATR experiments, determination of the optical constants and spectral simulation of the
IRRAS spectrum for a compact monolayer

The polarized ATR spectra of 1a, 1b, 2a, 2b and 3 compounds were recorded on a

ThermoScientific iS50 FTIR spectrometer at a resolution of 4 cm_l, by coadding 500 scans. ATR
experiments were performed using a single-reflection ATR accessory (Specac) equipped with a
germanium (Ge) crystal and a DTGS detector. A BaF, wire grid polarizer was added to record the
spectra in the p- and s-polarizations. 1a, 1b, 2a, 2b and 3 films were obtained after successive

evaporation of 10 pl of chloroform-based solutions. The isotropic and anisotropic optical constants
(refractive index n(17 ) and extinction coefficient k(17 )) of 1a, 1b, 2a, 2b and 3 compounds have

been determined from polarized ATR spectra, using the procedure decribed by Dignam et al.’
Isotropic optical constants (i.e. similar values of the in-plane and out-of-plane refractive indexes
and extinction coefficients) have been measured for 1a, 1b, 2a, 2b and 3 compounds. We have
checked for these three compounds that the intensities of the bands in the p-polarized ATR

spectrum are the double than those measured in the s-polarized ATR spectrum, that is expected for
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an isotropic layer. The refractive index in the visible was set to 1.33 for 1a, 1b, 2a, 2b and to 1.41
for 3. The computer program used to calculate the IRRAS spectra for a compact monolayer of 1a,
1b, 2a, 2b and 3 compounds deposited onto perovskite/Au substrate is based on the Abeles’ matrix
formalism,** which has been generalized for anisotropic layers.® Several parameters must be fixed
in the program such as the the thickness of the monolayer, the refractive index (set to 2.5) and the
thickness (set to 185 nm) of the perovskite film, the angle of incidence (set to 75°) and the

polarization of the infrared beam. The p-polarized reflectance of the covered R () and bare R (0)

substrates have been calculated using the spectral dependence of the optical constants of 1a, 1b,

2a, 2b and 3 and of gold.’
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Figure S36. PM-IRRAS spectrum of different modified perovskite surfaces (black lines).
Simulated spectra of compact isotropic layer with different thicknesses (colored lines).
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Figure S37. Overlay of the PM-IRRAS spectrum of different modified perovskite surfaces
showing the broadening of the symmetric and antisymmetric bending vibrations of the NH;* group
resulting from the presence of 2.
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