Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Lightweight polyimide-derived carbon foams with anisotropic

porous structure prepared by microwave-assisted foaming and

carbonization for thermal insulation and EMI shielding applications

Long Ni¹, Zhenling Kang², Yinfu Luo¹, Liwei Yan¹, Junyu Lu¹, Guanchun Wang³,

Shaoyu Qiu³, Mei Liang¹, Shengtai Zhou^{1*}, Huawei Zou^{1*}

- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- 2. Sichuan Aerospace Liaoyuan Science and Technology Co., Ltd., Chengdu

610100, China

 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China

^{*} Corresponding author. E-mail address: <u>hwzou@163.com</u> (Huawei Zou) and <u>qduzst@163.com</u> (Shengtai Zhou).

Peak area ratio of D-band to Peak area of D-band Peak area of G-band Samples G-band (I_D/I_G) PICF₈₀₀ 12309.26 5657.18 3.35 PICF₁₀₀₀ 29976.38 8939.80 2.72 PICF₁₂₀₀ 43901.88 16158.61 2.38 PICF₁₄₀₀ 67247.52 28247.00 1.99

Table S1. The peak aeras of both D-band and G-band, and the intensity ratio of D-band to G-band, i.e., I_D/I_G , of PICFs.

The deconvolution of Raman spectral peaks of PICFs was performed using the Fourier deconvolution method, which was briefly given below: collecting data \rightarrow determination of instrument response function \rightarrow Fourier transformation \rightarrow the deconvolution of frequency domain \rightarrow inverse Fourier transformation. As tabulated in Table S1, the peak areas of the D-band and G-band were obtained by split-peak fitting of D-band and G-band using Origin software, and the peak area ratio between D-band and G-band (I_D/I_G) was used to characterize the degree of graphitization in carbon-based materials.

Samples	Density	Volumetric	Weight loss	Compressive strength (kPa)	
	(kg/m^3)	shrinkage (%)	(%)	Vertical	Horizontal
PIF	22.23	-	-	58.29	37.15
PICF ₈₀₀	25.63	44.87	36.33	47.78	77.52
PICF ₁₀₀₀	25.02	47.50	41.34	55.10	88.14
PICF ₁₂₀₀	24.38	49.05	42.54	75.22	81.49
PICF ₁₄₀₀	22.90	50.24	48.17	102.96	80.34

Table S2. The physical properties of PIF and PICFs.

Samples	Density (kg/ m ³)	Thermal conductivity [(W/(m·K)]	Refs
Melamine carbon foam	5.4	0.035	1
Graphene carbon aerogel	23.5	0.027	2
PI carbon foam	25.6	0.0356	This work
TiC-CNT/cellulose carbon aerogel	34.5	0.111	3
Cellulose carbon aerogel	43.8	0.043	3
rGO/sugarcane carbon foam	47	0.115	4
Cotton/sucrose carbon foam	60	0.069	5
PI/graphene carbon aerogel	74	0.038	6
Sucrose bio-carbon foam	89	0.092	7
PI carbon aerogel	112	0.055	8
Wood carbon composite	113	0.089	9
PDMS/PIF/Fe/CNT carbon foam	150	0.058	10

Table S3. A comparison of density and thermal conductivity of PICFs with other porous carbon materials reported in literature.

Table S4. A comparison of density, thickness and EMI shielding performances of PICFs

Somelog	Density (k	Thickness	EMI SE	EMI SSE	Dafa	
Samples	g/m^3)	(mm)	(dB)	$[dB/(g/cm^2)]$	Keis	
CNT/graphene/PI foam	20	2	28.2	7050	11	
PI/CNT composite foam	20.7	5	20.3	1962	12	
PI/graphene carbon foam	22	2	63.5	14430	13	
PI carbon foam	22.9	1.9	53.2	12216	This work	
PI/Fe/CNT carbon foam	28.33	2	37.2	6565.5	10	
PI carbon foam	29	1.7	22.6	4582	14	
CNT/PI foam	32.1	2	41.1	6422	15	
TiC-CNT/cellulose carbon aerogel	34.5	2	89.7	13000	3	
PI carbon aerogel	34.7	1	51	14697	16	
Cellulose carbon aerogel	43.8	2	50	5708	3	
rGO/sugarcane carbon foam	47	2.9	53	3830	4	
PI/graphene aerogel	74	1.9	54.6	3883	6	
MXene@ANFs/PI hybrid foam	74.3	4	48.9	1645	17	
PI/graphene composite aerogel	76	2.5	28.8	1518	18	
PI carbon foam	91	2	54	2967	19	

with other porous (carbon) materials reported in literature.

Fig. S1. FTIR spectra of PEAS, MAF, PIF and PICF.

Fig. S2. (a-c) C1s and (d-f) O1s high-resolution spectra of PIF_{800} , $PICF_{1000}$ and

PICF₁₂₀₀.

Fig. S3. Illustration of the measurement directions for SEM observation, mechanical properties, thermal insulation, volume resistance and EMI shielding performance as well as the lightweightness of PIF and PICF.

Fig. S4. Statistical distribution of pore size: (a) PIF, (b) $PICF_{800}$, (c) $PICF_{1000}$, (d)

PICF₁₂₀₀, (e) PICF₁₄₀₀.

Fig. S5. The optical images of sample blocks after the direct burning test using an alcohol lamp: (a) PIF, (b) $PICF_{800}$.

References

- Y. Liu, Z. Chen, J. Zhang, S. Ai and H. Tang, *J Porous Mat*, 2019, 26, 1305-1312.
- W. Sun, A. Du, G. Gao, J. Shen and G. Wu, *Micropor Mesopor Mat*, 2017, 253, 71-79.
- Z. Zong, P. Ren, Z. Guo, J. Wang, J. Hu, Z. Chen, Y. Jin, F. Wang and F. Ren, *Carbon*, 2022, **197**, 40-51.
- L. Wang, X. Shi, J. Zhang, Y. Zhang and J. Gu, *J Mater Sci Technol*, 2020, 52, 119-126.
- 5. A. Chithra, P. Wilson, S. Vijayan, R. Rajeev and K. Prabhakaran, *J Mater Sci Technol*, 2021, **94**, 113-122.
- X. Jiang, Z. Zhao, S. Zhou, H. Zou and P. Liu, ACS Appl Mater Interfaces, 2022, 14, 45844-45852.
- S. Wu, D. Chen, G. Zhao, Y. Cheng, B. Sun, X. Yan, W. Han, G. Chen and X. Zhang, *Chem Eng J*, 2022, 434, 134514.
- 8. Z. Zheng, G. Liang, L. Li, J. Liu, X. Wang, Y. Sun and K. Li, *Gels*, 2022, **8**, 308.
- Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin, X. Zhao, Y. Ding, J. Li, W. Yin, Q. Peng, X. He and Y. Li, ACS Appl Mater Interfaces, 2017, 9, 21371-21381.
- Z. P. Sun, B. Shen, Y. Li, J. L. Chen and W. G. Zheng, *Nano Res*, 2022, 15, 6851-6859.
- Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai and Z.-M. Li, *Carbon*, 2021, 176, 118-125.

- Z. Sun, J. Chen, X. Jia, G. Wang, B. Shen and W. Zheng, *Mater Today Phys*, 2021, 21, 100521.
- H. Jing, Z. Miao, Z. Zeng, H. Liu, S. Zhou, H. Zou and M. Liang, *Materials*, 2021, 14, 7551.
- C. F. Li, C. X. Zhou, J. B. Lv, B. Liang, R. K. Li, Y. Liu, J. H. Hu, K. Zeng and
 G. Yang, *Carbon*, 2019, **149**, 190-202.
- Y. Wang, Z. Zhou, C. Zhou, W. Sun, J. Gao, K. Dai, D. Yan and Z. Li, ACS Appl Mater Interfaces, 2020, 12, 8704-8712.
- H. Xiao, J.-b. Lv, W. Tan, X. He, M.-h. Chen, K. Zeng, J.-h. Hu and G. Yang, *Chem Eng J*, 2022, **450**, 138344.
- L. Zhuo, Y. Cai, D. Shen, P. Gou, M. Wang, G. Hu and F. Xie, *Chem Eng J*, 2023, 451, 138808.
- Z. Yu, T. Dai, S. Yuan, H. Zou and P. Liu, *ACS Appl Mater Interfaces*, 2020, 12, 30990-31001.
- J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan, X. Wei, G. Zhang, Z. Ma and X. He, *Carbon*, 2020, **158**, 45-54.