Supplementary Information

Optimizing Dicyandiamide Pretreatment Conditions for Enhanced Structure and Electronic Properties of Polymeric Graphitic Carbon Nitride

Ganesh Kesavan^a, Dan C. Sorescu^{b,c}, Zidao Zeng^a, Faezeh Askari^a, Yiwen He^{a,c}, Nathaniel L.

Rosi^{a,c}, Alexander Star^{a,d}*

^a Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

^b United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States

^c Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

^d Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

*Corresponding author. Email: astar@pitt.edu

Table of Contents	
	Page Number
Table S1. Diffraction plane (002) and the corresponding d spacing value of various samples.	S-3
Table S2. Solid yield (SY) of value of various pretreated samples in comparison with TP	S-3
Table S3. XPS binding energy positions for each deconvoluted C 1s spectra	S-4
Table S4. Deconvoluted XPS peak assignments, binding energies (eV),FWHM (eV), and fitted peak area (%) of N 1s	S-4
Table S5. Elemental composition of the prepared samples obtained from XPS analysis.	S-5
Table S6. PL emission spectra values of various prepared samples.	S-6
Table S7. The peak to peak separation (Δ_{Ep}) value of various prepared samples.	S-6
Table S8. The list of crystalline C1-C8 and molecular M1-M4 systems analyzed in this study.	S-7
Figure S1. Enlarged XRD patterns between 10 ° to 24°	S-9
Figure S2. SEM images of the PgCN samples prepared using various methodologies (a) TP, (b) MP, (c), Stirr, (d) Probe, (e) SE, and (f) FD.	S-9
Figure S3. XPS survey spectra of various samples.	S-10

Table S1. Diffraction plane (002) and the corresponding d spacing value of various samples.						
Sample	2 theta (002)	d spacing (nm)				
TP	27.60°	0.32				
MP	27.54°	0.32				
Stirr	27.34°	0.33				
Probe	27.5°	0.32				
SE	27.54°	0.32				
FD	27.60°	0.32				

Cable S2. Solid yield (SY) of value of various pre-treated samples in comparison with T				
Weight obtained (mg)	Yield percentage			
567.7	56.77			
539.08	53.9			
568.21	56.82			
567.3	56.73			
562.72	56.27			
534.08	53.4			
	Weight obtained (mg) 567.7 539.08 568.21 567.3 534.08			

Table S3. XPS binding energy positions for each deconvoluted C 1s spectra						
Sample	C-C	CN ₃ /N-C=N	$\pi - \pi^*$ excitations			
ТР	284.8	288.2	294.0			
МР	284.8	288.1	293.8			
Stirr	284.8	288.2	293.8			
Probe	284.8	288.2	293.9			
SE	284.8	288.1	293.7			
FD	284.8	288.1	293.9			

Table S4. Deconvoluted XPS peak assignments, binding energies (eV), FWHM (eV), and							
fitted peak area (%) of N 1s							
Sample	Assignments	Binding energy (eV)	FWHM (eV)	Fitted peak area (%)			
	C-N=C	398.54	1.59	25			
	NH ₂	399.6	1.22	19			
ТР	NH	400.38	1.43	22			
	NC ₃	401.16	2.14	34			
	C-N=C	398.50	1.80	32			
	NH ₂	399.61	1.09	19			
MP	NH	400.37	1.18	21			
	NC ₃	401.11	1.55	28			
	C-N=C	398.42	1.67	31			
	NH ₂	399.65	1.13	21			

Stirr	NH	400.36	1.16	21
	NC ₃	401.11	1.49	27
	C-N=C	398.55	1.77	32
	NH ₂	399.60	1.01	19
Probe	NH	400.33	1.03	19
	NC ₃	401.10	1.66	30
	C-N=C	398.60	1.58	30
	NH ₂	399.60	1.28	24
SE	NH	400.37	1.00	19
	NC ₃	401.08	1.43	27
	C-N=C	398.59	1.41	26
	NH ₂	399.61	1.23	23
FD	NH	400.40	1.13	21
	NC ₃	401.18	1.66	30

Table S5. Elemental composition of the prepared samples obtained from XPS analysis.						
Sample	C 1s (at %)	N 1s (at %)	O 1s (at %)	C/N ratio (at %)		
ТР	39.44	57.29	3.27	0.68		
MP	42.68	56.11	1.21	0.76		
Stirr	39.91	57.62	2.48	0.69		
Probe	41.28	56.02	2.69	0.73		
SE	40.39	57.85	1.76	0.69		
FD	41.5	55.22	3.28	0.75		

Table S6. PL emission spectra values of various prepared samples.						
Sample	λ (nm)	FL intensity	FWHM			
ТР	463	14369800	116.74			
МР	460	13850700	113.48			
Stirr	467	12409100	117.12			
Probe	465	12942300	118.70			
SE	463	12866900	116.32			
FD	461	14640600	118.49			

Table S7. The peak-to-peak separation (ΔE_p) values of various prepared samples.					
Sample	$\Delta \mathrm{E}_\mathrm{p}$ (mV)	ΔE_p mean value (n=3)			
ТР	178	173			
MP	110	118			
Probe	111	110			
Stirr	114	110			
RC	111	115			
FD	110	110			

Table S8. The list of crystalline C1-C8 and molecular M1-M4 systems analyzed in this study. For the C1-C8 crystals the corresponding supercell sizes, compositions and C/N ratios are provided together with the supercell dimensions and angles as optimized at PBE-D2 level. For M1-M4 molecular systems the supercell dimensions were kept frozen during atomistic optimizations. The indicated band gaps for C1-C8 and HOMO-LUMO gaps for M1-M4 systems have been determined at HSE06-D2 level.

System	Supercell	Supercell	C/N	Lattice	Lattice	Band Gap
	Size	Composition		Distances (Å)	Angles (deg.)	(eV)
C1	2x2x1	C96 N160 H96	0.600	a=14.492	α=90.000	4.31
				b=17.159	β=99.095	
				c=13.214	γ=90.000	
C2	1x1x2	C192 N296 H120	0.648	a=16.574	α=99.267	3.33
				b=27.306	β=81.811	
				c=12.945	γ=94.206	
C3	1x1x4	C96 N144 H48	0.667	a=12.701	α=90.000	3.34
				b=16.645	β=135.210	
				c=17.616	γ=90.000	
C4	1x1x2	C144 N208 H48	0.692	a=12.454	α=90.000	2.85
				b=23.766	β=90.000	
				c=12.423	γ=90.067	
C5	1x1x3	C144 N204 H36	0.706	a=22.282	α=76.845	3.00
				b=12.922	β=79.692	
				c=18.732	γ=90.035	

	1		1			
C6	1x1x2	C72 N100 H12	0.720	a=13.902	α=90.015	2.98
				b=13.870	β=99.083	
				c=13.233	γ=60.095	
C7	1x1x2	2 x (C18 N25 H3) ^{a)}	0.737	a=13.937	α=89.995	2.86
		2x (C24 N32)		b=13.923	β=89.146	
				c=13.183	γ=59.972	
C8	1x1x3	C144 N192	0.750	a=11.917	α=90.000	2.78
				b=20.495	β=90.000	
				c=13.345	γ=90.000	
M1		C6 N10 H6		a=30.000	α=90.000	4.58
				b=30.000	β=90.000	
				c=30.000	γ=90.000	
M2		С12 N19 Н6		a=36.000	α=90.000	3.98
				b=30.000	β=90.000	
				c=30.000	γ=90.000	
M3		C18 N27 H9		a=40.000	α=90.000	3.56
				b=40.000	β=90.000	
				c=40.000	γ=90.000	
M4		C24 N37 H15		a=45.000	α=90.000	3.71
				b=45.000	β=90.000	
				c=45.000	γ=90.000	
					1	

^{a)} Individual compositions of different layers are indicated in this case.

Figure S1. Enlarged XRD patterns between 10 ° to 24°

Figure S2. SEM images of the PgCN samples prepared using various methodologies (a) TP, (b) MP, (c), Stirr, (d) Probe, (e) SE, and (f) FD.

Figure S3. XPS survey spectra of various samples.