Supporting information for

High-*T_c* superconductivity of polyhydride Rb₂MgH₁₈ with a layered hydrogen structure at high pressure

Jianyun Wang¹, Ying Sun¹, Yulong Li², Shoutao Zhang^{3,*}, Bo Gao^{4,*}, and Hanyu Liu^{1,5*}

¹State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China

²Beijing Institute of Space Launch Technology, Beijing 10076, China

³Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, School of Physics, Northeast Normal University, Changchun 130024, China

⁴Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China

⁵International Center of Future Science, Jilin University, Changchun 130012, China

E-mail address: zhangst966@nenu.edu.cn, gaobo@calypso.cn, hanyuliu@jlu.edu.cn

Table S1 Proposed possible reactions for synthesizing the Rb_2MgH_{18} phase and correspondin
formation enthalpies at 250 GPa.

Reaction	Formation enthalpy
	(meV/atom)
$MgH_2 + 2RbH + 7H_2 \rightarrow Rb_2MgH_{18}$	-53.2
$MgH_4 + 2RbH + 6H_2 \rightarrow Rb_2MgH_{18}$	-34.8
$MgH_{12}+2RbH+2H_2 \rightarrow Rb_2MgH_{18}$	-21.9
$MgH_{16} + 2RbH \rightarrow Rb_2MgH_{18}$	-19.8

Table S2 Predicted structures of Rb_2MgH_{18} at pressure of 250 GPa.

	Lattice parameter	Atom coordinates	
<i>P</i> 1	<i>a</i> = 2.611 Å	Rb(1a) 0.308999, 0.482208, 0.851413	
	<i>b</i> = 2.671 Å	Rb(1a) 0.376345, 0.574038, 0.131486	
	<i>c</i> = 9.574 Å	Mg(1a) 0.468237, 0.728198, 0.526023	
	$\alpha = 97.077^{\circ}$	H(1a) 0.407778, 0.658143, 0.345924	
	$\beta = 96.272^{\circ}$	H(1a) 0.625895, 0.282581, 0.361020	
	$\gamma = 61.057^{\circ}$	H(1a) 0.875123, 0.695917, 0.283366	
		H(1a) 0.083008, 0.267492, 0.275114	
		H(1a) 0.242859, 0.025964, 0.337723	
		H(1a) 0.718381, 0.000533, 0.255991	
		H(1a) 0.965228, 0.210737, 0.991216	
		H(1a) 0.344581, 0.026805, 0.991495	
		H(1a) 0.723617, 0.842978, 0.991605	
		H(1a) 0.818594, 0.088547, 0.569746	
		H(1a) 0.400448, 0.323413, 0.639217	
		H(1a) 0.054104, 0.518181, 0.646444	
		H(1a) 0.882821, 0.128969, 0.717299	
		H(1a) 0.219383, 0.958407, 0.703857	
		H(1a) 0.654433, 0.738941, 0.701409	
		H(1a) 0.961393, 0.643178, 0.410106	
		H(1a) 0.125010, 0.350163, 0.457064	
		H(1a) 0.743661, 0.069940, 0.427942	
P6/mmm	<i>a</i> = 5.093 Å	Rb(3g) 0.50000, 0.00000, 0.50000	
	<i>c</i> = 5.138 Å	Rb(1a) 0.00000, 0.00000, 0.00000	
	$\alpha = 90^{\circ}$	Mg(2c) 0.66667, 0.33333, 0.00000	
	$\beta = 90^{\circ}$	H(12o) 0.10233, 0.20465, 0.35081	
	$\gamma = 120^{\circ}$	H(12o) 0.60208, 0.80104, 0.20482	
		H(12n) 0.61680, 0.61680, 0.86765	

culated using PBE ¹ and SCAN ² functionals.				
	PBE	SCAN		
H1-H1	0.91 Å	0.89 Å		
Н2-Н3	1.05 Å	1.04 Å		

1.15 Å

1.20 Å

117.89 Å³

H1-H2

H3-H3 Volume 1.17 Å

1.21 Å

118.0 Å³

Table S3 H-H bond lengths and volumes of unit cell of P6/mmm Rb₂MgH₁₈ at 235 GPa calculated using PBE¹ and SCAN² functionals.

Fig. S1 Calculated convex hulls of (a) Rb-Mg and (b) Rb-H compounds at the pressure of 250 GPa.

Fig. S2 Calculated equations of states for stable elemental phases of (a) Rb, (b) Mg, and (c) H with unit cells under high pressure using VASP and WIEN2K software.

Fig. S3 Phase diagrams of $Rb_xMg_yH_z$ compounds relative to Rb, Mg, and H at (a) 180 K and 250 GPa, and (b) 280 K and 250 GPa. Black solid squares represent the stable phases, and the squares with the other colors mapped to the Gibbs free energies (meV/atom) above the convex hull indicate the metastable phases.

Fig. S4 Crystal structure of stable P1 phase of Rb₂MgH₁₈. The solid lines indicate the crystal lattice. The magenta, orange and light pink spheres represent the Rb, Mg and H, respectively.

Fig. S5 Simulated X-ray diffraction patterns for (a) P1 and (b) P6/mmm phases of Rb_2MgH_{18} at 250 GPa.

Fig. S6 Calculated enthalpies of P6/mmm structure with respect to P1 structure of Rb_2MgH_{18} using PBE¹ and SCAN² functionals.

Fig. S7 Snapshots around 4000 steps of P6/mmm structure in the MD simulations under (a) 500 and (b) 1000 K. H layers in the P6/mmm structure at (c) 0 K and (d) 500 K. Two specific H were labeled as H1 and H2 to indicate the diffusion behavior of protons.

Fig. S8 2D sections of ELF on the (a) (1^{10}) and (b) (110) planes in Rb₂MgH₁₈-P6/mmm structure at 235 GPa.

Fig. S9 Atom-projected band structure for H1, H2 and H3, which are indicted by cyan, green and red colors, respectively.

Fig. S10 Eliashberg spectral functions $\alpha^2 F(\omega)$ (solid line) and integrated EPC constant (λ) (dashed line) of Rb₂MgH₁₈-P1 structure in a unit cell at 235 GPa.

Reference:

- 1 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 2 J. Sun, A. Ruzsinszky and J. P. Perdew, Phys. Rev. Lett., 2015, 115, 036402.