Supporting Information for

Theoretical Insights into the Two-Dimensional Gallium Oxide Monolayer for Adsorption and Gas Sensing of C₄F₇N Decomposition Products

Rong Han,^{†a} Zhaofu Zhang,^{†b} Wei Liu,^c Fengxiang Ma,^c Hailing Guo,^a Zhuo Jiang,^a Xuhao Wan,^a

Anyang Wang,^a Chao Yuan,^b Wenjun Zhou,^a Yu Zheng^{*a} and Yuzheng Guo^{*a}

^a School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China

^b The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China

° China State Grid Anhui Electric Power Research Institute, Hefei, 230601, Cdhina

† These authors contributed equally to this work.

Corresponding author.

E-mail address: zywhuee@whu.edu.cn (Yu Zheng), yguo@whu.edu.cn (Yuzheng Guo).

This PDF file includes: Figure S1 to S21 Table S1

Fig. S1 Variations of temperature and energy *versus* the MD simulation time at (a) 300 K and (b) 500 K for pristine 2D Ga_2O_3 . Atomic structures of 2D Ga_2O_3 after 10 ps AIMD simulation at (c) 300 K and (d) 500 K and (e-f) further geometry relaxation.

Fig. S2 Optimized atomic structures of (a) CF_4 , (b) C_2F_6 , (c) C_3F_8 , (d) C_2F_4 , (e) C_3F_6 , (f) C_2N_2 , (g) C_2F_3N , (h) C_3F_5N , (i) C_4F_7N , (j) COF_2 .

.

Fig. S3 Band structures of (a) pristine Ga_2O_3 , and Ga_2O_3 adsorbed by (b) CF_4 , (c) C_2F_6 , (d) C_3F_8 , (e) C_2F_4 , (f) C_3F_6 , (g) C_2N_2 , (h) C_2F_3N , (i) C_3F_5N , (j) C_4F_7N , and (k) COF_2 . The black dashed lines represent the E_F .

Fig. S4 Work function of (a) pristine Ga_2O_3 , and Ga_2O_3 adsorbed by (b) CF_4 , (c) C_2F_4 , (d) C_2F_6 , (e) C_2F_3N , (f) C_3F_6 .

Fig. S5 Work function of Ga_2O_3 adsorbed by (a) C_3F_8 , (b) C_3F_5N , (c) COF_2 , (d) C_2N_2 and (e) C_4F_7N .

Fig. S6 Variations of temperature and energy *versus* the AIMD simulation time at (a) 300 K and (b) 500 K for $C_2F_4@Ga_2O_3$. Atomic structures of $C_2F_4@Ga_2O_3$ after 10 ps AIMD simulation at (c) 300 K and (d) 500 K and (e-f) further geometry relaxation.

Fig. S7 Variations of temperature and energy *versus* the AIMD simulation time at (a) 300 K and (b) 500 K for $C_3F_6@Ga_2O_3$. Atomic structures of $C_3F_6@Ga_2O_3$ after 10 ps AIMD simulation at (c) 300 K and (d) 500 K and (e-f) further geometry relaxation.

Fig. S8 The highest occupied orbital (HOMO) and lowest unoccupied orbital (LUMO) of (a) C_2F_4 , (b) C_3F_6 , (c) C_4F_8 , (d) C_5F_{10} .

Fig. S9 Orbital-resolved band structures of $C_x F_{2x} @Ga_2O_3$. The black dashed lines represent the E_F .

Fig. S10 Atomic structures of (a) C_4F_8 and (b) C_5F_{10} . PDOS of (c) $C_4F_8@Ga_2O_3$ and (d) $C_5F_{10}@Ga_2O_3$ contributed by C and N atoms. The black dashed lines represent the E_F .

Fig. S11 Schematic illustration of applying compressive and tensile biaxial strain to pristine Ga_2O_3 and $gas@Ga_2O_3$.

Fig. S12 Band structures of pristine Ga_2O_3 under biaxial strain. The black dashed lines represent the E_F .

Fig. S13 Strain-induced work function of pristine Ga_2O_3 and $C_3F_6@Ga_2O_3$.

Fig. S14 Work function of pristine Ga₂O₃ under biaxial strain.

Fig. S15 PDOS of pristine $C_3F_6@Ga_2O_3$ under biaxial strain. The black dashed lines represent the E_F .

Fig. S16 Band structures of $C_3F_6@Ga_2O_3$ under biaxial strain. The black dashed lines represent the E_F .

Fig. S17 Local atomic configuration of the $C_3F_6@Ga_2O_3$ with lattice strain from -6% to +6%. The atoms are color-coded by the displacement in *z* direction with the reference of the unstrained $C_3F_6@Ga_2O_3$ systems. The -6% and +6% cases are the same in Fig. 6 in the main paper.

Fig. S18 Work function of $C_3F_6(a)Ga_2O_3$ under biaxial strain.

Fig. S19 Adsorption energy versus the applied biaxial strain for $C_2F_4@Ga_2O_3$.

Fig. S20 Work function of (a) O_2 , (b) CO_2 , (c) H_2O and (d) N_2 adsorbed Ga_2O_3 .

Fig. S21 Band structures of (a) O_2 , (b) CO_2 , (c) H_2O and (d) N_2 adsorbed Ga_2O_3 . The black dashed lines represent the E_F .

System	$E_{\rm ad}({\rm eV})$	$H(\text{\AA})$	$\Delta Q(e)$	$\tau(s)$	$\Phi\left(\mathrm{eV}\right)$
O ₂	-1.25	2.66	0.0157	9.83×10 ⁸	7.54
CO_2	-0.15	2.95	-0.0008	3.30×10 ⁻¹⁰	8.60
H_2O	-0.32	1.82	0.0112	2.37×10-7	8.64
N ₂	-0.16	2.79	0.0096	4.86×10 ⁻¹⁰	8.60

Table S1 Calculated adsorption energy (E_{ad}) , adsorption height (H), charge transfer (ΔQ), recovery time (τ) , and work function (Φ) of all adsorption systems.