Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting information

Application of Arginine-Doped PEDOT:PSS as Hole Transfer Layer in

Perovskite Solar Cells

Yuanlin Yang ^a, Yanqing Yao^b, Ying Li ^a, Xusheng Zhao^b, Wan Cheng ^a, Banghui

Chen^a, Lijia Chen^{a*}, Ping Li^{b*}, Shuhui Tang^{b,c}

^aCollege of Physics and Electronic Engineering, Chongqing Normal University,

Chongqing 401331, China. ^bSchool of Physics and Electronic Science, Zunyi Normal University, Zunyi 563006, China

^c Guizhou Xinmei Nano Technology Co., LTD. Zunyi 564199, China

*Corresponding author. E-

mailaddress:ljchen01@cqnu.edu.cn,lip19870212@126.com

Fig.S1. Microscope images of different PEDOT:PSS film: (a) Pure PEDOT:PSS, (c) A-PEDOT:PSS.

Fig. S2. UPS spectra of PEDOT:PSS and A-PEDOT:PSS films

Fig. S3. J-V characteristics of inverted PSCs with different concentrations (1, 5, 10, 20, and 30 wt%) of arginine hole transport layers under AM 1.5G illumination of 100mW/cm².

Fig.S4. Electrochemical impedance spectroscopy of inverted PSCs with different concentrations (1, 5, 10, 20, and 30 wt%) of arginine hole transport layers under dark conditions.

Table S1	Parameters of	of equivalen	t circuit	extracted	from th	e fitting o	of imped	lance of	lata
in A-PEI	DOT:PSS dev	vice and cont	rol devi	ce.					

Device	$R_s(\Omega)$	$R_{rec}(\Omega)$	C (F)
Pure PEDOT:PSS	66.97	2.904×10 ⁴	7.333×10 ⁻⁹
A-1 wt%-PEDOT:PSS	41.48	3.882×10 ⁴	7.468×10 ⁻⁹
A-5 wt%-PEDOT:PSS	28.85	5.648×10 ⁴	9.129×10 ⁻⁹
A-10 wt%-PEDOT:PSS	27.60	6.227×10^{4}	8.944×10 ⁻⁹
A-20 wt%-PEDOT:PSS	27.95	7.899×10 ⁴	9.357×10 ⁻⁹
A-30 wt%-PEDOT:PSS	53.51	1.235×10 ⁵	1.067×10 ⁻⁸

Fig.S5. TPC measurements of A-PEDOT:PSS device and control device.