Supporting Information

Polymerization-Induced Clusteroluminescence of Poly(cyclic carbonate)s

Bin Liu, ${ }^{* a, b}$ Genghong Huang, ${ }^{a}$ Hu-liang Lu, ${ }^{c}$ Kang Chen, ${ }^{c}$ Zishan Yan, ${ }^{c}$ Ya-Ling Wang, ${ }^{a}$ Bo Chu, ${ }^{b}$ Fu-de Ren, ${ }^{e}$ Yongzhen Yang, ${ }^{\text {c,d }}$ and Xing-Hong Zhang**

${ }^{\text {a }}$ School of Energy and Power Engineering, North University of China, Taiyuan 030051, P. R. China. E-mail: liubin@nuc.edu.cn ${ }^{\text {b }}$ MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xhzhang@zju.edu.cn
cMOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
dShanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, P. R. China.
eSchool of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P. R. China.

Experimental section

Materials: vinylene carbonate (VC, 99\%, J\&K) and vinylethylene carbonate (VEC, 99\%, J\&K) were purified by vacuum distillation. 2, 2'-azobisisobutyronitrile (AIBN, 99\%, J\&K) was obtained by recrystallization. Dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), dioxane, propylene carbonate (PC) and ethylene carbonate (EC) were spectrally pure and purchased from Aladdin. Deionized water was used in all the experiments.

Characterization: photoluminescence (PL) spectra were collected from an FS5 spectrometer with a 150 W xenon arc excitation source. The fluorescence decay curve was recorded on an Instruments FLS980 transient spectrometer. Absolute quantum yields $\left(\Phi_{\mathrm{F}}\right)$ were obtained by integrating sphere with an excitation wavelength ($\lambda_{\text {ex }}$) of 360 nm . Proton (${ }^{1} \mathrm{H} N \mathrm{NR}$) and Carbon-13 nuclear magnetic resonance spectroscopy spectra (${ }^{13} \mathrm{C}$ NMR) were performed on a Bruker Advance DMX 400 MHz instrument. The number-averaged molecular weight $\left(M_{n}\right)$ and molecular weight distribution ($\Xi=M_{\mathrm{w}} / M_{\mathrm{n}}$) were determined using a Waters 2414 refractive index (RI) detection system equipped with a Waters 1525 isocratic HPLC pump. The gel permeation chromatography (GPC) columns were eluted with dimethylformamide with 1.0
$\mathrm{mL} / \mathrm{min}$ at $60^{\circ} \mathrm{C}$. The sample concentration was $0.4 \mathrm{wt} \%$, and the injection volume was $100 \mu \mathrm{~L}$. Calibration was performed using monodisperse polymethyl methacrylate (PMMA) standards. Differential scanning calorimetry (DSC) tests were conducted on a TA Instruments TA-Q200 instrument (New Castle, DE) at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under N_{2} atmosphere, and the data from the second heating curve was collected. Thermogravimetric analysis (TGA) was carried out on a PerkinElmer Pyris TMS 1 thermogravimetric analyzer from room temperature to $800^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under N_{2} atmosphere. The morphologies of fibers, microspheres and sponges were studied by a Zeiss LEO 1530 (Gemini, Germany) scanning electron microscope (SEM). The diameter of the microspheres was measured by dynamic light scattering (DLS) at a scattering angle $\theta=90^{\circ}$ as a function of temperature using a 90 Plus Particle Size Analyzer. Fourier transform infrared (FT-IR) spectroscopy was performed on a Bruker TENSOR 27 spectrometer.

Synthesis of poly(vinylene carbonate) (PVC): PVC with high M_{n} was prepared by bulk polymerization of VC. ${ }^{1} \mathrm{VC}(3 \mathrm{~mL}, 47.4 \mathrm{mmol})$ and AIBN ($29.5 \mathrm{mg}, 0.18 \mathrm{mmol}$) were transferred into a 20 mL three-necked flask and reacted at $70^{\circ} \mathrm{C}$ for 2.4 min under N_{2} atmosphere. Then DMF was added into the three-necked flask to dissolve the crude product. The resulting PVC was purified by three precipitations in excess methanol followed by vacuum drying at $60^{\circ} \mathrm{C}$ to constant weight. The M_{n} and $Đ$ of PVC are 1436.7 KDa and 2.0, respectively.

PVC with relatively low M_{n} was prepared by solution polymerization of VC. VC ($2.5 \mathrm{~mL}, 39.5 \mathrm{mmol}$), AIBN $(64.8 \mathrm{mg}, 0.39 \mathrm{mmol})$ and dioxane $(10 \mathrm{~mL})$ were transferred into a 20 mL three-necked flask and reacted at $65^{\circ} \mathrm{C}$ for 17 h under N_{2} atmosphere. The crude PVC dioxane solution was precipitated in excess methanol and washed in methanol for three times. Finally, the pure white PVC powder was vacuum-dried at $60^{\circ} \mathrm{C}$ to constant weight. The M_{n} and $Đ$ of PVC are 8.3 KDa and 1.7, respectively. The M_{n} of PVC can be controlled by adjusting the ratio of VC and AIBN. When the mole ratio of VC and AIBN is 220:1, 40:1 and 30:1, the corresponding M_{n} and \emptyset of PVC are $18.8 \mathrm{KDa} / 1.8,3.3 \mathrm{KDa} / 1.6$ and $2.5 \mathrm{KDa} / 1.3$, respectively.

Preparation of PVC electrospun fibers: a series of PVC/DMF solutions with different concentration ($25 \mathrm{wt} \%$, $27 \mathrm{wt} \%, 29 \mathrm{wt} \%, 31 \mathrm{wt} \%, 33 \mathrm{wt} \%, 35 \mathrm{wt} \%)$ were prepared. Then, the solution was loaded into a syringe
capped with a metal needle (diameter: 0.6 mm). The feed rate of $0.8 \mathrm{~mL} \mathrm{~h}^{-1}$ was controlled by a syringe pump. Continuous electrospun fibers were deposited on tin foil after applying a positive DC voltage of 19.9 kV to the syringe needle. The tip-to-collector distance was about 25 cm . After electrospinning, the fibers were vacuum-dried at $60^{\circ} \mathrm{C}$ to constant weight.

Preparation of PVC electrospray microspheres: PVC/DMF solutions with a concentration of $15 \mathrm{wt} \%$ was formulated and loaded into a syringe capped with a metal needle (diameter: 0.6 mm). The feed rate of 0.8 $\mathrm{mL} \mathrm{h}{ }^{-1}$ was controlled by a syringe pump. The metal needle was connected to a positive DC voltage of 19.9 kV and positioned about 10 cm above the water surface.

Preparation of PVC sponge: a high concentration PVC/DMF solution was prepared by dissolving pure PVC was in DMF, and precipitated dropwise in excess methanol. Owing to the large M_{n}, cotton-like white flocculent PVC was precipitated. After being fully stirred and filtered in a Buchner funnel, dispersed in water and dried in vacuum, PVC sponge was prepared.

Synthesis of poly(vinylethylene carbonate) (PVEC): VEC ($2.50 \mathrm{~g}, 21.93 \mathrm{mmol}$) and AIBN (12.1 mg, 0.074 mmol) were transferred into a 10 mL three-necked flask and reacted at $70^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. ${ }^{2}$ The resulting PVEC was purified by precipitations three times in excess methanol followed by vacuum drying at $60^{\circ} \mathrm{C}$ to constant weight. The M_{n} and $Đ$ of PVEC are 8.5 KDa and 2.0 , respectively.

Computational details: all geometric optimizations were performed using the TD-DFT method at the B3LYP/6-31(d) level using the Gaussian 09 procedure. The distances of oxygen atoms in the polymers were determined using Gaussian view 6.0.

Results and discussion

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of PVC.

Figure S2. ${ }^{13}$ C NMR spectrum of PVC.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of PVEC.
$\stackrel{\infty}{\stackrel{\infty}{4}}$

DMSO- d_{6}

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of PVEC.

Figure S5. GPC curve of PVEC.

Figure S6. DSC curves of $\operatorname{PVEC}\left(M_{n}=8.5 \mathrm{KDa}, ~ Ð=2.0\right)$ and $\operatorname{PVC}\left(M_{\mathrm{n}}=1436.7 \mathrm{KDa}, ~ Ð=2.0\right)$.

Figure S7. TGA curves of $\operatorname{PVEC}\left(M_{\mathrm{n}}=8.5 \mathrm{KDa}, ~ Ð=2.0\right)$ and $\operatorname{PVC}\left(M_{\mathrm{n}}=1436.7 \mathrm{KDa}, ~ Ð=2.0\right)$.

Figure S8. Photographs of EC, VC and VEC taken in daylight (left) and under 365 nm UV irradiation (right).

Figure S9. PL spectra of pure EC at different $\lambda_{\text {ex }}$.

Figure S10. UV-vis absorption spectra of EC in DMSO (5.0 M).

Figure S11. PL spectra of pure DMSO at different $\lambda_{\text {ex }}$.

Figure S12. UV-vis absorption spectra of PVEC/DMSO solutions with different concentrations.

Figure S13. (A-E) PL spectra of PVEC/DMSO solution with different concentrations at different $\lambda_{\text {ex }}$. (F) Plots of PL emission peak and quantum yield versus concentration for PVEC/DMSO solutions ($\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$). Inset: photographs of PVEC/DMSO solutions with different concentrations in daylight and under 365 nm UV light.

Figure S14. GPC curves in full range of PVC.

PVEC-10

HOMO

PVEC-15

Figure S15. Theoretical calculations based on single polymer chains of PVEC with 10, 15, 20 constitutional units at (TD-DFT) B3LYP/6-31g(d) level. HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital.

Figure S16. The digital photos of PVC fibers (A), microspheres (B) and sponges (C).

Figure S17. SEM photographs of PVC fibers electrospun from PVC/DMF solutions with different concentrations.

Figure S18. SEM photographs of PVC fibers electrospun from a $31 w t \%$ PVC/DMF solution.

Figure S19. Schematic diagram of electrospray.

Figure S20. The hydrodynamic diameter of PVC microspheres in water measured by DLS at $25^{\circ} \mathrm{C}$. (average diameter: $0.994 \mu \mathrm{~m})$.

Table S1. Summary of elemental analysis of PVC and PVEC.

Sample	C (\%)	$\mathrm{H}(\%)$	O (calculated, \%)	Molecular
PVC-2.5KDa	37.48	24.97	37.55	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$
PVC-3.3KDa	37.50	25.05	37.45	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$
PVC-8.3KDa	37.54	25.01	37.45	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$
PVC-18.8KDa	37.49	24.94	37.57	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$
PVC-1436.7KDa	37.44	25.08	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$	
PVEC-8.5KDa	35.73	42.84	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}$	

Table S2. The calculated radiative $\left(k_{r}\right)$ and non-radiative $\left(k_{n r}\right)$ decay rates of PVC and PVEC in the solid state and DMSO solution, respectively.

	Φ_{F}	$\tau(\mathrm{ns})$	$\mathrm{k}_{\mathrm{r}}\left(\mathrm{s}^{-1}\right)^{\mathrm{a}}$	$\mathrm{K}_{\mathrm{nr}}\left(\mathrm{s}^{-1}\right)^{\mathrm{b}}$
solid PVC	4.5%	4.3	1.05×10^{7}	2.22×10^{8}
PVC in DMSO	9.9%	3.6	2.75×10^{7}	2.50×10^{8}
solid PVEC	2.8%	5.4	5.18×10^{6}	1.80×10^{8}
PVEC in DMSO	11.7%	4.3	2.72×10^{7}	2.05×10^{8}

${ }^{\mathrm{a}} \mathrm{k}_{\mathrm{r}}=\overline{\Phi_{\mathrm{F}} / \tau,{ }^{\mathrm{b}} \mathrm{knr}=\left(1-\Phi_{\mathrm{F}}\right) / \tau \text {, where } \Phi_{\mathrm{F}} \text { is the fluorescence quantum yield, and } \tau \text { is the fluorescence lifetime, }}$ respectively.

Table S3. Conformational parameters of optimized model of PVC-10.

$\mathrm{O} \ldots \mathrm{O}$	distance (Å)	$\mathrm{O} \ldots \mathrm{O}$	distance (A)
$\mathrm{O}_{7} \ldots \mathrm{O}_{12}$	3.655	$\mathrm{O}_{47} \ldots \mathrm{O}_{52}$	3.601
$\mathrm{O}_{15} \ldots \mathrm{O}_{20}$	3.662	$\mathrm{O}_{55} \ldots \mathrm{O}_{60}$	2.989
$\mathrm{O}_{23} \ldots \mathrm{O}_{28}$	3.662	$\mathrm{O}_{63} \ldots \mathrm{O}_{68}$	2.889
$\mathrm{O}_{31} \ldots \mathrm{O}_{36}$	3.663	$\mathrm{O}_{71} \ldots \mathrm{O}_{76}$	2.795
$\mathrm{O}_{39} \ldots \mathrm{O}_{44}$	3.647		

Table S4. Conformational parameters of optimized model of PVC-15.

Table S5. Conformational parameters of optimized model of PVC-20.

0... 0	distance (Å)	0... 0	distance
$\mathrm{O}_{126} \ldots \mathrm{O}_{127}$	3.001	$\mathrm{O}_{146} \ldots \mathrm{O}_{147}$	2.867
$\mathrm{O}_{128} \ldots \mathrm{O}_{129}$	2.859	$\mathrm{O}_{148} \ldots . \mathrm{O}_{149}$	2.832
$\mathrm{O}_{132} \ldots \mathrm{O}_{133}$	2.928	$\mathrm{O}_{152} \ldots \mathrm{O}_{153}$	2.866
$\mathrm{O}_{134} \ldots \mathrm{O}_{135}$	2.961	$\mathrm{O}_{154} \ldots \mathrm{O}_{155}$	3.086
$\mathrm{O}_{136} \ldots \mathrm{O}_{137}$	2.850	$\mathrm{O}_{156} \ldots \mathrm{O}_{157}$	2.829
$\mathrm{O}_{138} \ldots \mathrm{O}_{139}$	3.037	$\mathrm{O}_{158} . . . \mathrm{O}_{159}$	2.940
$\mathrm{O}_{144} \ldots \mathrm{O}_{145}$	2.820	$\mathrm{O}_{160} \ldots . \mathrm{O}_{161}$	2.835
$\mathrm{O}_{126 \ldots} \ldots \mathrm{O}_{142}$	3.033	$\mathrm{O}_{88} . . . \mathrm{O}_{156}$	2.950

Table S6. Conformational parameters of optimized model of PVEC-10.

$\mathrm{O} \ldots \mathrm{O}$	distance (\AA)	$\mathrm{O} \ldots \mathrm{O}$	distance (A$)$
$\mathrm{O}_{15} \ldots \mathrm{O}_{27}$	5.043	$\mathrm{O}_{80} \ldots \mathrm{O}_{97}$	4.824
$\mathrm{O}_{24} \ldots \mathrm{O}_{41}$	4.896	$\mathrm{O}_{94} \ldots \mathrm{O}_{111}$	4.903
$\mathrm{O}_{38} \ldots \mathrm{O}_{55}$	4.889	$\mathrm{O}_{108} \ldots \mathrm{O}_{125}$	4.921
$\mathrm{O}_{52} \ldots \mathrm{O}_{69}$	4.817	$\mathrm{O}_{122} \ldots \mathrm{O}_{143}$	5.106
$\mathrm{O}_{66} \ldots \mathrm{O}_{83}$	4.873		

Table S7. Conformational parameters of optimized model of PVEC-15.

Table S8. Conformational parameters of optimized model of PVEC-20.

$\mathrm{O} \ldots \mathrm{O}$	distance (\AA)	$\mathrm{O} \ldots \mathrm{O}$	distance (A)
$\mathrm{O}_{249} \ldots \mathrm{O}_{250}$	4.580	$\mathrm{O}_{257} \ldots \mathrm{O}_{262}$	3.188
$\mathrm{O}_{247} \ldots \mathrm{O}_{251}$	4.843	$\mathrm{O}_{271} \ldots \mathrm{O}_{274}$	4.874
$\mathrm{O}_{250} \ldots \mathrm{O}_{254}$	4.801	$\mathrm{O}_{275} \ldots \mathrm{O}_{278}$	4.835
$\mathrm{O}_{257} \ldots \mathrm{O}_{263}$	3.353	$\mathrm{O}_{237} \ldots \mathrm{O}_{281}$	4.296

Notes and references

1 N. D. Field and J. R. Schaefgen, J. Polym. Sci., 1962, 58, 533.
2 D. C. Webster, Prog. Org. Coat., 2003, 47, 77.

