Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## Supporting Information

## From aggregation-caused quenching to aggregation-induced delayed fluorescence: the impact of substituent effect

Yuqi Liu, Lijuan wang\*, Lin Xu and Yan Song

School of Material Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, China. \*Email: wanglijuan@hit.edu.cn.



**Figure S1** Geometrical structure comparisons and RMSD values (Å) between singlet state (black) and triplet state (blue) for DMAC-CNIH (a, e), DMAC-CNIB (b, f), DMAC-CNIM (c, g) and DMAC-CNBIM (d, h) in toluene and solid states.



**Figure S2** Distributions and energies of the frontier molecular orbitals for DMAC-CNIH, DMAC-CNIB, DMAC-CNIM and DMAC-CNBIM in toluene.



**Figure S3** The natural transition orbital (NTO) of DMAC-CNIH (a), DMAC-CNIB (b), DMAC-CNIM(c) and DMAC-CNBIM (d) in toluene (the values are the component of localized excitation in the transitions).

| different basis sets with m06 functional in solid states. |           |           |           |            |  |  |  |  |
|-----------------------------------------------------------|-----------|-----------|-----------|------------|--|--|--|--|
| Basis sets                                                | DMAC-CNIH | DMAC-CNIB | DMAC-CNIM | DMAC-CNBIM |  |  |  |  |
| 6-31G(d)                                                  | 531       | 577       | 461       | 506        |  |  |  |  |
| 6-31G(d, p)                                               | 528       | 576       | 461       | 506        |  |  |  |  |
| 6-311G(d)                                                 | 517       | 567       | 455       | 503        |  |  |  |  |
| 6-311G(d, p)                                              | 513       | 564       | 454       | 503        |  |  |  |  |
| Exp.                                                      | 517       | 500       | 479       | 502        |  |  |  |  |

**Table S1** Emission wavelengths (nm) of the investigated molecules calculated by

 different basis sets with m06 functional in solid states.

**Table S2** The oscillator strengths (*f*), the  $K_r$  (calculated by MOMAP and Einstein equation<sup>a</sup>, s<sup>-1</sup>),  $K_{nr}$  from S<sub>1</sub> to S<sub>0</sub> states (s<sup>-1</sup>), the effective  $K_{ISC}$  and  $K_{RISC}$  between singlet and triplet states (s<sup>-1</sup>), the prompt fluorescence (PF) efficiency ( $\Phi_{PF}$ )<sup>b</sup> and the delayed fluorescence quantum efficiency ( $\Phi_{TADF}$ )<sup>b</sup> based on the calculated  $K_r$  using MOMAP and Einstein equation in toluene and solid states, respectively.

|                                                                                                                                                  | DMAC-CNIH              |                      | DMAC-CNIB              |                       | DMAC-CNIM              |                       | DMAC-CNBIM             |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|
|                                                                                                                                                  | toluene                | crystal              | toluene                | crystal               | toluene                | crystal               | toluene                | crystal               |
| f                                                                                                                                                | 0.0089                 | 0.0026               | 0.0105                 | 0.0001                | 0.0088                 | 0.0020                | 0.0127                 | 0.0008                |
| $K_{\rm r}$ (MOMAP)                                                                                                                              | 6.69×10 <sup>3</sup>   | 7.40×10 <sup>5</sup> | 9.21×10 <sup>3</sup>   | 2.81×10 <sup>4</sup>  | 2.22×10 <sup>4</sup>   | 5.82×10 <sup>5</sup>  | 2.38×10 <sup>4</sup>   | 3.79×10 <sup>5</sup>  |
| $K_{\rm r}$ (Einstein)                                                                                                                           | $2.47 \times 10^{6}$   | 7.68×10 <sup>5</sup> | 3.00×10 <sup>6</sup>   | 2.55×10 <sup>4</sup>  | 2.64×10 <sup>6</sup>   | 7.70×10 <sup>5</sup>  | 3.60×10 <sup>6</sup>   | 2.53×10 <sup>5</sup>  |
| $K_{\rm nr}(S_1 \rightarrow S_0)$                                                                                                                | $1.01 \times 10^{10}$  | 6.34×10 <sup>9</sup> | 1.50×10 <sup>10</sup>  | 1.13×10 <sup>6</sup>  | 1.52×10 <sup>10</sup>  | 8.83×10 <sup>5</sup>  | $1.47 \times 10^{10}$  | 4.74×10 <sup>8</sup>  |
| $K_{\rm ISC} (S \rightarrow T)$                                                                                                                  | 3.50×10 <sup>3</sup>   | 7.96×10 <sup>7</sup> | 3.49×10 <sup>3</sup>   | 2.94×10 <sup>7</sup>  | 7.04×10 <sup>3</sup>   | 8.68×10 <sup>8</sup>  | 2.01×10 <sup>3</sup>   | 2.09×10 <sup>7</sup>  |
| $K_{RISC}(T \rightarrow S)$                                                                                                                      | 5.24×10 <sup>3</sup>   | 1.68×10 <sup>3</sup> | 3.26×10 <sup>3</sup>   | 5.86×10 <sup>6</sup>  | 6.84×10 <sup>3</sup>   | 6.09×10 <sup>8</sup>  | 2.00×10 <sup>3</sup>   | 1.27×10 <sup>6</sup>  |
| $\Phi_{PF(\text{Einstein})}$                                                                                                                     | 2.28×10 <sup>-13</sup> | 4.33×10-7            | 1.43×10 <sup>-13</sup> | 1.02×10 <sup>-3</sup> | 6.74×10 <sup>-13</sup> | 1.73×10 <sup>-3</sup> | 2.22×10 <sup>-13</sup> | 5.11×10 <sup>-4</sup> |
| $\Phi_{TADF}$ (Einstein)                                                                                                                         | 8.40×10 <sup>-11</sup> | 1.50×10-6            | 4.66×10 <sup>-11</sup> | 1.78×10 <sup>-2</sup> | 8.01×10 <sup>-11</sup> | 3.86×10 <sup>-1</sup> | 3.36×10 <sup>-11</sup> | 2.25×10-5             |
| $\Phi_{PF}(MOMAP)$                                                                                                                               | 6.60×10 <sup>-7</sup>  | 1.15×10-4            | 6.15×10-7              | 9.21×10 <sup>-4</sup> | 1.46×10-6              | 6.69×10 <sup>-4</sup> | 1.62×10-6              | 7.65×10-4             |
| $\Phi_{TADF}(MOMAP)$                                                                                                                             | 2.28×10 <sup>-13</sup> | 1.45×10-6            | 1.43×10 <sup>-13</sup> | 2.34×10-2             | 6.74×10 <sup>-13</sup> | 3.97×10 <sup>-1</sup> | 2.22×10 <sup>-13</sup> | 3.37×10-5             |
| <sup><i>a</i></sup> The Einstein spontaneous emission equation used to calculate $K_r$ is written as $K_r = \frac{f\Delta E_{fi}^2}{1.499}$ .    |                        |                      |                        |                       |                        |                       |                        |                       |
| $\Phi_{PF} = \frac{K_r}{K_{PF} + K_{PF}}; \Phi_{TADF} = \frac{\Phi_{ISC}\Phi_{RISC}}{1 + \Phi_{PF}} \Phi_{PF}$                                   |                        |                      |                        |                       |                        |                       |                        |                       |
| <sup>b</sup> The $\Phi_{PF}$ and $\Phi_{TADF}$ are calculated by the following equations:<br>$K_r + K_{nr+K_{ISC}} = 1 - \Phi_{ISC} \Phi_{RISC}$ |                        |                      |                        |                       |                        |                       |                        |                       |

**Table S3** The calculated electronic transition dipole moments (unit: Debye) from  $S_1$  to  $S_0$  state for DMAC-CNIH, DMAC-CNIB, DMAC-CNIM and DMAC-CNBIM in toluene and solid states.

| DMAC-CNIH |        | DMAC-CNIB |        | DMAC-CNIM |        | DMAC-CNBIM |        |
|-----------|--------|-----------|--------|-----------|--------|------------|--------|
| Toluene   | Solid  | Toluene   | Solid  | Toluene   | Solid  | Toluene    | Solid  |
| 0.0508    | 0.5439 | 0.0440    | 0.1345 | 0.0719    | 0.4446 | 0.0843     | 0.2887 |



**Figure S4** Calculated HR factors versus the normal mode frequencies from  $S_1$  to  $S_0$  state in both toluene (a, c, e, g) and solid (b, d, f, h) states for DMAC-CNIH (a, b), DMAC-CNIB (c, d), DMAC-CNIM (e, f) and DMAC-CNBIM (g, h). The vibration modes contributed the most are inserted.



**Figure S5** Main charge hopping pathways of DMAC-CNIH (a), DMAC-CNIB (b), DMAC-CNIM (c) and DMAC-CNBIM (d).



**Figure S6** (a) Illustration of projecting angle-dependent hopping paths to a transistor channel in the *ab* plane and the calculated angle resolved anisotropic hole (b) and electron (c) mobilities of DMAC-CNIH.



**Figure S7** (a) Illustration of projecting angle-dependent hopping paths to a transistor channel in the *ab* plane and the calculated angle resolved anisotropic hole (b) and electron (c) mobilities of DMAC-CNIB.



**Figure S8** (a) Illustration of projecting angle-dependent hopping paths to a transistor channel in the *ab* plane and the calculated angle resolved anisotropic hole (b) and electron (c) mobilities of DMAC-CNIM.