Supporting Information

Non-halogenated Solvent and Layer-by-Layer Blade-coated Organic

Solar Cells via Non-halogenated Additive Adjusting Morphology and

Crystallization

Youzhan Li, ^{1ab} Jiang Wu, ^{1ab} Xueting Yi, ^{ab} Zekun Liu, ^{ab} He Liu, ^c Yingying Fu, ^a Jian Liu^{ab} and Zhiyuan Xie*^{ab}

 ^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
 ^b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.

^c College of Environmental Science and Engineering, Jilin Normal University, Siping, P. R. China.

*Corresponding authors: *xiezy_n@ciac.ac.cn* (Z. Xie)

Fig. S1 (a) The normalized absorption spectra of the LBL blade-coated PM6/Y6(*o*-XY) or PM6/Y6(*o*-XY+DMN) films.

Fig. S2 The *in-situ* UV-vis absorption of the blade-coated Y6 films prepared with *o*-XY and *o*-XY+DMN solvents from the solution to thin film state: (a, b) the changes of line absorption profiles with time, (c, d) time-resolved 2D UV-vis absorption spectra and (e, f) the evolution of the Y6 characteristic absorption peak and peak intensity with time.

Fig. S3 Film-depth-dependent light absorption spectroscopy of (a) LBL blade-coated PM6/Y6(*o*-XY) and (b) PM6/Y6(*o*-XY+DMN) active layer films with different etching depth.

Table S1 The *d*-spacing and crystal coherence length (CCL) of the (100) peak in the in-plane and the (010) peak in the out-of-plane direction for LBL blade-coated PM6/Y6(*o*-XY) and PM6/Y6(*o*-XY+DMN) films

Coating method	Peak position	q (Å-1)	d-spacing (Å)	FWHM (Å-1)	CCL (Å)
LBL PM6/Y6(o-XY)	100 (ID)	0.285	22.05	0.099	58.99
LBL PM6/Y6(o-XY+DMN)	100 (IP)	0.294	21.37	0.046	126.90
LBL PM6/Y6(o-XY)	010 (OOP)	1.736	3.62	0.269	21.71
LBL PM6/Y6(o-XY+DMN)		1.731	3.63	0.175	33.37

Fig. S4 2D color plot of TA spectra of the LBL blade-coated (a, b) PM6/Y6(*o*-XY) and (c, d) PM6/Y6(*o*-XY+DMN) films excited at 750 nm.

Table S2 The fitted time and relative population of the rising process of PM6 GSB for the LBL blade-coated PM6/Y6(*o*-XY) and PM6/Y6(*o*-XY+DMN) films excited at 750 nm

Coating method	$\tau_1(ps)$	A ₁ (%)	$\tau_2(ps)$	A ₂ (%)
LBL PM6/Y6(o-XY)	0.40	79.2	4.02	20.8
LBL PM6/Y6(o-XY+DMN)	0.24	76.7	2.07	23.3

Fig. S5 The dark *J-V* characteristics of (a) electron-only and (b) hole-only devices based on LBL blade-coated PM6/Y6(*o*-XY) or PM6/Y6(*o*-XY+DMN) active layer.

Coating method	$\mu_{\rm h}({ m cm}^2{ m V}^{-1}{ m s}^{-1})$	$\mu_{\rm e} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	$\mu_{ m h}/\mu_{ m e}$
LBL PM6/Y6(o-XY)	2.03×10^{-4}	1.14×10^{-4}	1.78
LBL PM6/Y6(o-XY+DMN)	4.31×10^{-4}	3.25×10^{-4}	1.32

Table S3 Electron mobility (μ_e), hole mobility (μ_h) and the ratio of the ratio of μ_h/μ_e for the LBL blade-coated PM6/Y6(*o*-XY) and PM6/Y6(*o*-XY+DMN) active layers

Fig. S6 (a) PCE statistics of the OSCs based on LBL blade-coated PM6/Y6(*o*-XY) and PM6/Y6(*o*-XY+DMN) active layers.

	Solvent	Method	PCE _{max} (%)	Ref.	
All Halogenated Solvents	CF	LBL	16.26	1	
	CF	LBL	16.17	2	
	CF	BHJ	15.83	2	
	CB	BHJ	12.17	3	
	CF	LBL	16.35	4	
	CF	BHJ	15.37	4	
Non-halogenated Solvents+Halogenated Additive	o-XY+CN	BHJ	15.10	5	
All Non-halogenated Solvents	PX	BHJ	11.26	3	
	o-XY	BHJ	12.98	C	
	o-XY+DMN	BHJ	15.51	0	
		LBL	16.15	this work	

 Table S4 Photovoltaic parameters of the PM6/Y6 based OSCs prepared by bladecoating in different solvent systems

Coating method	$E_{g}(eV)$	$V_{\rm oc}$ (V)	$E_{\rm loss}({\rm eV})$
LBL PM6/Y6(o-XY)	1.353	0.764	0.589
LBL PM6/Y6(o-XY+DMN)	1.364	0.849	0.515

Table S5 E_{g} , V_{OC} and E_{loss} of the OSCs based on LBL blade-coated PM6/Y6(*o*-XY) and PM6/Y6(*o*-XY+DMN) active layer

Fig. S7 Schematic of top-view large-area OSCs module.

- 1 · B. Zhang, F. Yang, S. Chen, H. Chen, G. Zeng, Y. Shen, Y. Li and Y. Li, *Adv. Funct. Mater.*, 2022, **32**, 2202011.
- 2 · Y. Zheng, R. Sun, M. Zhang, Z. Chen, Z. Peng, Q. Wu, X. Yuan, Y. Yu, T. Wang,
- Y. Wu, X. Hao, G. Lu, H. Ade and J. Min, Adv. Energy Mater., 2021, 11, 2102135.
- 3 · H. Chen, R. Zhang, X. Chen, G. Zeng, L. Kobera, S. Abbrent, B. Zhang, W. Chen,
- G. Xu, J. Oh, S.-H. Kang, S. Chen, C. Yang, J. Brus, J. Hou, F. Gao, Y. Li and Y. Li, *Nat. Energy*, 2021, **6**, 1045–1053.
- 4 · R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo,
- M. Shi, C. Yang, F. Huang, Y. Li and J. Min, Joule, 2020, 4, 407–419.
- 5 H. Li, S. Liu, X. Wu, Q. Qi, H. Zhang, X. Meng, X. Hu, L. Ye and Y. Chen, *Energy Environ. Sci.*, 2022, **15**, 2130–2138.
- 6 · Y. Li, H. Liu, J. Wu, H. Tang, H. Wang, Q. Yang, Y. Fu and Z. Xie, ACS Appl.
 Mater. Interfaces, 2021, 13, 10239–10248.