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Materials and Methods

Materials.

Potassium hexafluorophosphate, 4-fluoronitrobenzene, pyridine 4-borate,
iron powder and tetrakis-(triphenylphosphine)-palladium were purchased from
Bide Pharmatech Ltd. 1,2-dibromoethane and piperazine were purchased from
Inno-chem. Methyl iodide and 4-fluoroaniline were purchased from
Energy-Chemical. Acetic acid and acid red 94 was purchased from
Tokyo-Chemical-Industry. Aniline and 4-aminoanisole were purchased from
Aladdin. Sodium carbonate, potassium carbonate and sodium sulphate were
purchased form FuChen Technology Co., Ltd. All the commercially available

reactants and reagents were used as received without further purification.

Instruments.

'H and 3C NMR spectra were obtained on a Bruker Advance Ill spectrometer
in CDCI3 and DMSO-des using tetramethylsilane (TMS, & = 0) as internal
reference. UV-vis spectra, photoluminescence (PL) spectra, molar absorption
values and fluorescence quantum yields (QY) were measured on a Shimadzu
UV-2600i spectrophotometer and a Shimadzu RF-6000 spectrophotometer,
respectively. High resolution mass spectrometry (HR-MS) measurements were
performed on a Waters UPLC/Premier mass spectrometer. X-Ray singlecrystal
diffraction data were collected on a Gemini E X-ray diffraction (Agilent, Oxford)
with graphitemonochromator Mo-Ka (A = 0.71073 A) at 110 K. ROS assays
were conducted by using a Xenon lamp (Microsolar300, Beijing Perfectlight).
The quantum efficiencies were measured using an Edinburgh FS5
fluorescence spectrophotometer. ESR analysis was performed on a Bruker E

500 spectrometer.

Methods.

Molar absorption values (¢) were tested by UV-vis spectrophotometer and

obtained according to the following equation:
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A: absorption values; c: concentration; I: thickness of cuvette
Fluorescence quantum yields (QY) was tested on a spectrophotometer using
quinine sulfate (1 ug / mL, ® = 0.54) in diluted sulfuric acid (0.05 mM) as the

standard substance.

Details of the X-ray crystallography

Single crystals of CieHisN2 (PA-H) [exp_7878] were recrystallised
from [solvents] mounted in inert oil and transferred to the cold gas stream of
the diffractometer. Single crystals of CieH1isF2N2 (PA-F) [exp_7770] were
recrystallised from [solvents] mounted in inert oil and transferred to the cold
gas stream of the diffractometer. Single crystals of CigH22N20>
(PA-OCH3) [exp_7936] were recrystallised from [solvents] mounted in inert oil
and transferred to the cold gas stream of the diffractometer. Single crystals of
C1sH20N4 (PA-NH2) [exp_7935] were recrystallised from [solvents] mounted in
inert oil and transferred to the cold gas stream of the diffractometer. Single
crystals of CigH1sN4 (PA-CN) were recrystallised from [solvents] mounted in
inert oil and transferred to the cold gas stream of the diffractometer. Single
crystals of CoHioN2 (DMABN) [exp_8224] were recrystallised
from [solvents] mounted in inert oil and transferred to the cold gas stream of
the diffractometer.

Crystal structure determination

Crystal Data. C16H1sN2 (PA-H), M =238.32, orthorhombic, a = 8.5407(8) A, b =
8.5954(10) A, c = 18.058(2) A, U = 1325.6(3) A3, T = 239.95(10), space group
Pbca (no. 61), Z = 4, y(Mo Ka) = 0.071, 5437 reflections measured, 1295
unigue (Rint = 0.0636) which were used in all calculations. The final wR(F2) was
0.1396 (all data). Note : The I/sigma for the data drop below 3 at around 2 theta
= 43. This is relatively low, but the best result that can be obtained, presumably
due to the inherent properties of the material. C1sH16F2N2 (PA-F) , M =274.31,
monoclinic, a = 8.4198(9) A, b = 5.6543(6) A, ¢ = 14.1818(11) A, B =
101.313(9)°, U = 662.05(11) A3, T = 113.50(10), space group P21/c (no.
14), Z = 2, y(Mo Ka) = 0.102, 2438 reflections measured, 1268 unique (Rint =
0.0328) which were used in all calculations. The final wR(F2) was 0.1230 (all
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data). C1gH22N202 (PA-OCH3), M =298.38, monoclinic, a = 7.7608(9) A, b =
8.3096(9) A, ¢ = 11.9313(12) A, B = 103.196(10)°, U = 749.13(14) A3, T =
117.4(3), space group P24/n (no. 14), Z = 2, y(Mo Ka) = 0.087, 3046
reflections measured, 1434 unique (Rint = 0.0441) which were used in all
calculations. The final wR(F2) was 0.1233 (all data). CieH20N4
(PA-NH2), M =268.36, monoclinic, a = 12.305(6) A, b = 5.6820(10) A, ¢ =
10.771(4) A, B = 113.87(6)°, U = 688.7(5) A3, T = 117.7(6), space group P2:/c
(no. 14), Z = 2, y(Mo Ka) = 0.080, 3631 reflections measured, 1319 unique
(Rint = 0.0993) which were used in all calculations. The final wR(F2) was
0.2899 (all data). Note : The I/sigma for the data drop below 3 at around 2
theta = 38. This is relatively low, but the best result that can be obtained,
presumably due to the inherent properties of the material. CigH1sN4
(PA-CN), M = 288.35, monoclinic, a = 4.0268(2) A, b = 11.5604(8) A, ¢ =
15.2182(10) A, B = 93.647(5)°, U = 1413.51(16) A3, T = 117.1(8), space group
P24/c (no. 14), Z = 2, y(Mo Ka) = 0.084, 21049 reflections measured, 5435
unigue (Rint = 0.0450) which were used in all calculations. The final wR(F2) was
0.1051 (all data). CeH1ioN> (DMABN), M =146.19, monoclinic, a =
7.0765(5) A, b = 7.5321(5) A, ¢ = 15.6647(16) A, B = 88.918(6)°, U =
834.80(12) A3, T = 117.80(10), space group P2i/c (no. 14), Z = 4, y(Mo Ko) =
0.071, 3505 reflections measured, 1608 unique (Rint = 0.0698) which were
used in all calculations. The final wR(F2) was 0.1593 (all data). Note : The
I/Sigma of 3 at 2 theta is of around 38. This is relatively low, but the best result
that can be obtained, presumably due to the inherent properties of the
material.

Computational details

The structures and for PA-CN have been studied via density functional
theory (DFT) at their excited states. All studied geometries were optimized at
TD U7 Lee-Yang—Parr gradient-corrected correlation functional hybrid
functional & ° (TD-B3LYP) with Grimme’s DFT-D3(BJ) empirical dispersion
correction ['% and the def2-SVP [': 12 pasis set level of theory by via Gaussian
09 D.01 '3, The harmonic frequencies were performed at the same level to

confirm that all studied structures as minima and transition states possess zero
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and one imaginary frequency, i.e., they are located at the minima and saddle
points on the potential energy surfaces, respectively All above calculations
were performed at implicit solvent by solvation model based on solute electron

density (SMD) 'Y where water is for PA-CN.

Synthesis and Characterizations.

T s AT
/—/ + LN - N N
BY reflux \/

Scheme S1. The synthesis of PA-H.

Synthesis of PA-H: Dibromoethane (2 mL, 23.10 mmol), aniline (2 mL, 21.94
mmol) and Na>CO3 (3 g, 28.30 mmol) was added into a round bottom flask.
The mixture was reflux for 6 h and was then cooled to room temperature. The
organic layer was separated by extracting several times with dichloromethane
(DCM). The organic phase was dried over anhydrous Na>SO4 and the solvent
was evaporated under reduced pressure. Recrystallization from DCM/MeOH
twice resulted in a white powder (1.12 g, yield = 43 %). The single crystal of
PA-H was obtained in a tube by slowly evaporating in DCM at room
temperature (colorless, square). '"H NMR (400 MHz, CDCls), & (TMS, ppm):
7.30 (dd, J=8.4 Hz, 7.2 Hz, 4H), 6.99 (d, J = 8 Hz, 4H), 6.90 (t, J = 7.2 Hz, 2H),
3.35 (s, 8H). 3C NMR (100 MHz, CDCls), 5 (TMS, ppm): 151.2, 129.2, 120.0,
116.3, 49.4. HR-MS (C16H1sN2): m/z 239.1545 ([M+H]*, calcd 239.1543).

Na2C03 /\
+ HZN—< >— F—< >—N N—< >—F
Br reﬂux /

Scheme S2. The synthesis of PA-F.
Synthesis of PA-F: Dibromoethane (2 mL, 23.10 mmol), p-fluoroaniline (2 mL,
21.06 mmol) and Na2CO3 (3 g, 28.30 mmol) was added into a round bottom
flask. After degas and refill with nitrogen for three times, the mixture was reflux
for 6 h and was then cooled to room temperature. The organic layer was
separated by extracting several times with DCM. The organic phase was dried

over anhydrous Na>SO; and the solvent was evaporated under reduced
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pressure. Recrystallization from DCM/MeOH twice resulted in a white powder
(1.1 g, yield = 38 %). The single crystal of PA-F was obtained in a tube by
slowly evaporating in a mixed solvent of DCM/hexane = 1:1 (v/v) at room
temperature (colorless, square). '"H NMR (400 MHz, CDCls), & (TMS, ppm):
7.02 ~6.92 (m, 8H), 3.27 (s, 8H). *C NMR (100 MHz, CDCls), 5 (TMS, ppm):
157.4 (d, J=237.8 Hz), 1749 (d, J = 1.2 Hz), 118.2 (d, J = 7.5 Hz), 115.6 (d, J
= 219 Hz), 50.5. HR-MS (C1H1eN2F2): m/z 275.1366 ([M+H]", calcd
275.1355).

" o S0 meo )X 3 0)-
/—/ + H,N OCH; ————> H,CO N N OCH,
BY HZO \_/

reflux
6h

Scheme S3. The synthesis of PA-OCHas.

Synthesis of PA-OCHs: Dibromoethane (2 mL, 23.10 mmol),
4-methoxyaniline (2.86 g, 23.22 mmol), Na2CO3 (5 g, 47.17 mmol) and purified
water (20 mL) was added into a round bottom flask. After degas and refill with
nitrogen for three times, the mixture was reflux for 6 h and was then cooled to
room temperature. The organic layer was separated by extracting several
times with DCM. The organic phase was dried over anhydrous Na>SO4 and the
solvent was evaporated under reduced pressure. Recrystallization from
DCM/MeOH twice resulted in a white powder (1.52 g, yield = 44 %). The single
crystal of PA-OCH3; was obtained in a tube by slowly evaporating in a mixed
solvent of DCM/MeOH = 1:1 (v/v) at room temperature (colorless, square). 'H
NMR (400 MHz, CDCl3) , & (TMS, ppm): 6.96 (d, J = 8.8 Hz, 4H) , 6.86 (d, J =
8.8 Hz, 4H) , 3.78 (s, 6H) , 3.24 (s, 8H). 3C NMR (100 MHz, CDCl3), d (TMS,
ppm): 154, 145.7, 118.4, 114.5, 55.6, 51.0. HR-MS (C1gH22N202): m/z
299.1754 ([M+H]*, calcd 299.1755).

e e 52 OO
HN NH + F CN ———> NC N N CN
_/ DMSO n_/

100 °C
12h
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Scheme S4. The synthesis of PA-CN.

Synthesis of PA-CN: Piperazine (111.1 mg, 1.29 mmol) , p-fluorobenzonitrile
(380.0 mg, 3.14 mmol) and KoCOs (475.3 mg, 3.44 mmol) was added into a
round bottom flask containing DMSO (10 mL). After degas and refill with
nitrogen for three times, the mixture was reacted 12 h at 100 ‘C and was then
cooled to room temperature. Water was injected into the mixture and a white
precipitate appeared. The precipitate obtained was rinsed with a small amount
of water to remove residual DMSO and recrystallized from DCM/PE to give a
white powder (189 mg, yield = 51 %). The single crystal of PA-CN was
obtained in a tube by slowly evaporating in a mixed solvent of DCM/Acetontrile
= 1:1 (v/v) at room temperature (colorless, needle shape). '"H NMR (400 MHz,
CDCIl3), 6 (TMS, ppm): 7.54 (d, J = 8.8 Hz, 4H) , 6.88 (d, J = 9.2 Hz, 4H) , 3.55
(s, 8H). *C NMR (100 MHz, CDCls), & (TMS, ppm): 152.6, 133.6, 119.8, 114.2,
101.1, 46.7. HR-MS (C1gH1eN4): m/z 289.1456 ([M+H]*, calcd 289.1448).

e 2 o O 3 0)-
HN NH + F NO, —2—35 O,N N N NO,
\n_/ DMSO n_/

100 °C
over night

Scheme S5. The synthesis of PA-NO..

Synthesis of PA-NO2: Piperazine (319.0 mg, 3.70 mmol),
p-Fluoronitrobenzene (1.1 mL, 10.37 mmol) and K>COs3 (1.3 g, 9.42 mmol) was
added into a round bottom flask containing DMSO. After degas and refill with
nitrogen for three times, the mixture was reacted over night at 100 ‘C and was
then cooled to room temperature accompanying with orange-yellow crystal like
particles precipitated. The precipitate obtained was rinsed with a small amount
of water to remove residual DMSO and recrystallized from DCM/PE to give a
orange-yellow powder product (1.08 g, yield = 89 %). '"H NMR (400 MHz,
CDCl3) , 6 (TMS, ppm): 8.18 (d, J = 9.2 Hz, 4H) , 6.84 (d, J = 9.6 Hz, 4H) ,
3.675 (s, 8H). HR-MS (C16H16N4O4): m/z 329.1238 ([M+H]*, calcd 329.1245).
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Scheme S6. The synthesis of PA-NHa.

Synthesis of PA-NH2: Acetic acid (10 mL), DCM (2 mL) and PA-NO: (343 mg,
1.30 mmol) was added into a round bottom flask and mixed well. After iron
powder (1.64 g) poured into the flask, the mixture was stirred 40 h at room
temperature. An excess of NaxCOs was then used to neutralize un-reacted
acid. The mixture was extracted with ethyl acetate (EA) for several times, and
the organic layer was separated. It was necessary to purify the mixture by
column chromatography using EA/ethanol (50:1, v/v) as eluent and
recrystallized from DCM/PE to give a yellow powder product (230 mg, yield =
66 %). The single crystal of PA-NH: was obtained in a tube by slowly
evaporating in a mixed solvent of DCM, EA, MeOH and ethanol at room
temperature (yellow, needle shape). '"H NMR (400 MHz, DMSO-ds) , 8 (TMS,
ppm): 6.73 (d, J = 8.8 Hz, 4H), 6.51 (d, J = 8.4 Hz, 4H), 4.60 (br, 4H), 3.02 (s,
8H). 3C NMR (100 MHz, DMSO-ds), d (TMS, ppm): 142.9, 142.6, 118.5, 115.3.
HR-MS (C16H21N4): m/z 269.1749 ([M+H]*, calcd 269.1761).

OO0 L OO
—/ t. dark
12h
Scheme S7. The synthesis of PA-Br.

Synthesis of PA-Br: PA-H (1.02 g, 4.29 mmol) was added into a double port
bottles containing DMF (10 mL) under condition of ice water bath.
N-bromosuccinimide (NBS) (1.66 g, 9.33 mmol) was then dissolved in DMF
(18 mL), which was slowly pipetted into the double port bottle. The mixture was
stirred 12 h in dark at room temperature. Water was infused into the mixture
and white deposit appeared. Then, it was purified by DCM:PE (1:2, v/v) on
silica gel column to afford the pure PA-Br as white solid (1.02 g, yield = 60 %).
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"H NMR (400 MHz, CDCls), 8 (TMS, ppm): 7.37 (d, J = 8.8 Hz, 4H), 6.84 (d, J =
8.8 Hz, 4H), 3.30 (s, 8H). HR-MS (C1sH16N2Br2): m/z 396.9718 ([M+H]*, calcd
396.9733).

Br x
(\NO . o, Q Ef%’é’f‘ > N
o Dy THE 0 OQ”
Br I N
N
Scheme S8. The synthesis of PA-Py.
Synthesis of PA-Py: a mixture of PA-Br (365 mg, 0.92 mmol),
4-pyridylboronic acid (272 mg, 2.21 mmol), Pd(PPhz)s (49 mg, 0.042 mmol),
and an excess of KoCO3 (3.49 g) in mixed solution of DMF (12 mL), THF (30
mL) and water (12 mL) was stirred for 23 h at 90 °C under nitrogen
atmosphere. After being cooled to the room temperature, the reaction mixture
was extracted with DCM. The organic layer was washed with saturated NaCl
solution, dried over anhydrous Na>SOs, and then evaporated in vacuum to
dryness. The residue was purified by column chromatography with
DCM/MeOH (20:1, v/v) to afford the pure PA-Py as yellow solid (112 mg, yield
= 31 %). 'H NMR (400 MHz, CDCls), & (TMS, ppm): 8.61 (d, J = 6 Hz, 4H),
7.63 (d, J=8.8 Hz, 4H), 7.51 (d, J = 6 Hz, 4H), 7.07 (d, J = 8.8 Hz, 4H), 3.47 (s,
8H). HR-MS (C26H24N4): m/z 393.2083 ([M+H]*, calcd 393.2074).

A N N7
G \®|
@ CH,I, Acetone,
N 60°C, 3 h N

(U P {
| N
N o /N®/

Scheme S9. Synthetic route of PA-Py*.
Synthesis of PA-Py*: A large excess of iodmethane (0.5 mL) was added into
the acetone solution of PA-Py (32 mg, 0.082 mmol). The mixture was stirred at
65 C for 3 h, where the color turned a deep yellow. After the mixture cooled to
room temperature, the yellow precipitate was taken by filtration. Transfer the

above yellow precipitate to a round bottom flask and add enough methanol to
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dissolve it. Saturated aqueous KPFs (10 mL) was then added into the flask and
reacted for 20 min at room temperature. Yellow powdered solid was obtained
after the solvent was evaporated under reduced pressure and rinsed in a small
volume of water (47 mg, yield = 80 %). '"H NMR (400 MHz, DMSO-ds), d (TMS,
ppm): 8.78 (d, J = 6.8 Hz, 4H), 8.37 (d, J = 6.8 Hz, 4H), 8.05 (d, J = 9.2 Hz, 4H),
7.16 (d, J = 8.8 Hz, 4H), 4.22 (s, 6H), 3.62 (s, 8H). '3C NMR (100 MHz,
DMSO-ds), & (TMS, ppm): 153.9, 153.4, 145.2, 130.0, 121.9, 114.7, 46.8, 46.3.
HRMS (C2sH30N42*): m/z 211.1239 ([M+H]*, calcd 211.1230).

ROS generation efficiency study.

A commonly used ROS indicator DCFH was employed to detect the overall
ROS generation of PA-Py* in solution under white light irradiation (24
mW-cm2). The fluorescence intensity of DCFH enhanced after reaction with
ROS. In brief, the activated DCFH (cocrn = 5 uM) solution was mixed with
PA-Py* (cra-py+ = 10 uM). Then the mixture was irradiated with white light at
different time interval, and the PL spectra were obtained with excitation at 489
nm and emission was collected from 510 to 600 nm. The overall ROS
generation efficiency (//lo - 1) was determined by using the fluorescence

intensity at 525 nm.
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Fig. S1 'H NMR spectrum of PA-H in CDCls.

o2

= o B3 = ==}

o L) = = =

o~ == S5s = =

pikic oS o .

= N~ g = F
~ | I

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
o (ppm)
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Fig. S18 Absorption spectra of (A) PA-H, (B) PA-F, (C) PA-OCH3s, and (D)
PA-NH: in varies of solution. Fluorescence spectra of (E) PA-H, (F) PA-F, (G)
PA-OCH3, and (H)PA-NH:in varies of solution.

Table S1. The molar extinction coefficients of PAs.

PAs eHF (x10%) €Hz0 (x10%) €omso (%10%) EToluene (% 10%)
PA-H 3.9 (250 nm) 1.9 (250 nm) - -
PA-F 3.2 (249 nm) 1.0 (249 nm) - -
PA-OCHs3 2.5 (252 nm) 1.2 (252 nm) - -
PA-NH: 3.0 (260 nm) 1.2 (260 nm) - -
PA-CN 3.4 (297 nm) 1.3 (297 nm) - -

PA-Py* - - 2.9 (419 nm) 1.7 (419 nm)

Table S2. The fluorescence lifetime (1) of PAs in different states.

PAs TTHF (NS) TH20 (NS) Tomso (NS) TToluene (NS)
PA-H 2.5030 - - -
PA-F 3.7216 - - -

PA-OCH; 3.6154 - - -

PA-NH: 4.8897 - - -
0.7873 (352 nm)

PA-CN 5.5948 - -

3.2654 (462 nm)
PA-Py* - - 0.5916 4.6342
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Fig. S24 Emission spectra of PA-CN crystal. Inset: images of PA-CN crystal
under day light and 254 nm UV irradiation.

Table S3. The fluorescence quantum yields (QY) of PAs in different states.

PAs QY71Hr (%) QYwater (%) QYbowmso (%) QYoluene (%)
PA-H 10.68 243 - -
PA-F 9.7 1.89 - -
PA-OCH:; 15.42 3.3 - -
PA-NH: 7.23 0.43 - -
PA-CN 12.65 22.74 - -
PA-Py* - - 0.57 14.24
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S.aureus

Fig. S35 Plate photographs of E. coil and S. aureus on agar plate
supplemented with or without PA-Py* (cpa-py+ = 10 yM) in darkness or upon
white light irradiation and then grown overnight.

Table S4. Single crystal data of PA-H, PA-F, PA-OCH3s, PA-NH2, PA-CN, and

DMABN.
Compound PA-H PA-F PA-OCH; PA-NH, PA-CN DMABN
Identification
code exp_7878 exp_7770 exp_7936 exp_7935 exp_7932 exp_8224
Empirical
formula Ci6HisN2 CicHicF2N2 CisH22N202 Ci6H20Na4 CisHieNa CoHioN2
Formula weight 238.32 274.31 298.38 268.36 288.35 146.19
Temperature /K 239.95(10) 113.50(10) 117.4(3) 117.7(6) 117.1(8) 117.80(10)
Crystal system  orthorhombic ~ monoclinic monoclinic monoclinic monoclinic monoclinic
Space group Pbca P2i/c P2i/n P2i/c P2i/c P2i/c
a/A 8.5407(8) 8.4198(9) 7.7608(9) 12.305(6) 4.0268(2) 7.105(5)
b/A 8.5954(10) 5.6543(6) 8.3096(9) 5.6820(10) 11.5604(8) 7.513(6)
c/A 18.058(2) 14.1818(11)  11.9313(12) 10.771(4) 15.2182(10) 15.636(15)
a/® 90 90 90 90 90 90
pre 90 101.313(9) 103.196(10) 113.87(6) 93.647(5) 88.918(6)
y/° 90 90 90 90 90 90
Volume / A3 1325.6(3) 662.05(11) 749.13(14) 688.7(5) 1413.51(16) 834.80(12)
zZ 4 2 2 2 4 4
Peatc / Mg mm”> 1.194 1.376 1.323 1.294 1.355 1.163
p/mm! 0.071 0.102 0.087 0.08 0.084 0.071
F(000) 512 288 320 288 608 312
Crystal 0.34x029x  0.26x0.23 0.35x0.30 0.37 % 0.35 0.33x0.28
size / mm? 0.14 x0.22 x0.23 x 0.01 x 0.24 0.210.14>0.04
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20 range for 6.56 to 6.88 to 7.28 to 7.24 to
6.42 to 52° 7.52 to 52°
data collection 51.98° 51.96° 51.94° 51.96°
-10<h <9, -10<h <9, -9<h<9, -15<h< 15, -4<h<4,
-8<h<8§,-9<k
Index ranges -7<k<10, -6<k<6, -10<k <10, -6<k<6, -14<k <14,
<9,-19<1<17
-22<1<21 -17<1<16 -14<1<14 -13<1<11 -37<1<36
Reflections
5437 2438 3046 3631 21049 3504
collected
1295[R(int) =  1268[R(int 1434[R(int 1319[R(int 5435[R(int
Independent [R(int) [R(int) [R(in) [R(int) [R(in) 1610[R(int) =
) 0.0636 =0.0328 =0.0441 =0.0993 =0.0450 )
reflections _ ) _ ) _ 0.0714(inf-0.94)]
(inf-0.9A)] (inf-0.9A)] (inf-0.9A)] (inf-0.9A)] (inf-0.9A)]
Data 1295 1268 1434 1319 5435 1610
restraints 0 0 0 0 61 0
parameters 83 91 101 92 398 102
Goodness-of-fit
1.058 1.079 1.047 1.041 1.078 1.027
on F?
Final R indexes R1=0.0483, R;=0.0525, R;=0.0973, R;=0.0417,
R =0.0546, R =0.0642,
[I>26 (I) i.e. wRy = wR, = wRy = wRy =
wR> =0.1094 wR> =0.1089
Fo>40 (Fo)] 0.1112 0.1023 0.2299 0.1045
R1=0.0634, R;=0.0809, R;=0.1789, R;=0.0479,
Final R indexes  R; =0.1096, R =0.1518,
wRy = wR, = wRy = wR2 =
[all data] wR>=0.1396 wR> =0.1588
0.1230 0.1233 0.2899 0.1209
Largest diff.
0.136/-0.128  0.191/-0.231  0.216/-0.224  0.370/-0.306  0.182/-0.219 0.205/-0.226
peak/hole /e A3
Flack
N N N N 009) N
Parameters
Completeness 0.9957 0.997 0.9951 0.9912 0.996 0.9969
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