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1. Experimental Section
1.1 General Information

'"H NMR (500 MHz), 13C NMR (125 MHz), and '°F NMR (470 MHz) spectra were
recorded on Bruker AV 600 NMR instrument at ambient temperature using deuterated
solvents. Chemical shifts were given parts per million (ppm) relative to
tetramethylsilane (0 = 0 ppm). High-resolution mass spectra (HRMS) were measured
on a Bruker maxis UHR-TOF mass spectrometer. Thermogravimetric analysis (TGA)
of final products were measured using a PerkinElmer Instruments (Pyrisl TGA) at a
heating rate of 10 °C/ min from 30 to 800 °C under nitrogen atmosphere. The UV-vis
absorption spectra were recorded wusing a UV-3100 spectrophotometer.
Photoluminescence spectra and phosphorescence spectra were measured on a Hitachi
F-7000 fluorescence spectrophotometer with xenon lamp as the light source. The
absolute PL quantum yields were determined on a Quantaurus-QY measurement
system (C9920-02, Hamamatsu Photonics) using an integrating sphere system under
nitrogen flow. The lifetimes of fluorescence and delayed fluorescence were
undertaken on PicoQuant Fluotime300. Cyclic voltammetry experiments were
performed on a CHI600 electrochemical analyzer (Chenhua, China) with a three-
electrode cell configuration consisting of platinum counter electrode, an Ag/AgCl
reference electrode and glassy carbon electrode used for the working electrode,
respectively. During the electrochemical measurements, nitrogen-purged CH3;CN was

used for the oxidation scan with tetra-n-butylammonium hexafluorophosphate (0.1 M



in CH3CN) as the supporting electrolyte, and redox potentials were obtained at a scan

rate of 100 mV sl

1.2 Theoretical Calculations

Geometrical and electronic properties of the ground-state were carried out by B3LYP
density functional method including 6-31G (d) basis set using Gaussian 09 software
package. HOMO and LUMO were visualized with Gaussview 5.0. The properties of
excited states were calculated by time-dependent DFT (TD-DFT) calculations with

PBEO functional and basis set of def2-SVP.

1.3 Device Fabrication and Characterization

Patterned ITO glass substrates were cleaned sequentially with acetone, deionized
water and isopropyl alcohol in an ultrasonic cleaner, then dried with N, flow and
finally transferred into a vacuum chamber for deposition. The organic layers of 8-
hydroxyquinolinolato-lithium (Liq) as electron injection layer and aluminum (Al) as
cathode layer were deposited by thermal evaporation at 5x10- Pa with rates of 0.1
and 3 A/s, respectively. The other organic layers were deposited at the rates of 0.2-3
A/s. The emitting area of the device is about 0.09 cm?. The current density-voltage-
luminance (J-V-L), L-EQE curves and electroluminescence (EL) spectra were
measured by using a Keithley 2400 source meter and an absolute EQE measurement

system (C9920-12, Hamamatsu Photonics, Japan).



1.4 Synthesis

All reagents and solvents were purchased from commercial sources and used without
further purification. All reactions were performed under nitrogen conditions using
anhydrous solvents. The final products were first purified by column chromatography,
and then further refined by temperature gradient vacuum sublimation. All reactions

were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).
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Scheme S1. Synthetic route to CzBNO.
Step 1: A mixture of 2-bromo-1,3-difluorobenzene (7.2 g, 40.0 mmol), 4-tert-
butylphenol (7.2 g, 48.0 mmol), and cesium carbonate (16.0 g, 50.0 mmol) in dry N-
methylpyrrolidone (100 mL) was stirred and heated at 50 °C for 12 h under nitrogen.
When cooling to room temperature, the reaction mixture was extracted with ethyl
acetate:petroleum ether (v:iv=1:1) and water. The collected organic layers were dried
over anhydrous Na,SO, and then evaporated under reduced pressure. The crude
product was further purified using silica gel chromatography with petroleum ether as
eluent to afford 2-bromo-1-(4-(tert-butyl)phenoxy)-3-fluorobenzene (compound 1) as
a white powder with a yield of 86%. '"H NMR (500 MHz, Chloroform-d) & 7.45 —
7.33 (m, 2H), 7.18 (m, 1H), 6.99 — 6.93 (m, 2H), 6.89 (td, J = 8.0, 1.5 Hz, 1H), 6.69

(dt, J= 8.5, 1.5 Hz, 1H), 1.34 (s, 9H). 3C NMR (125 MHz, CDCl;) & 161.36, 159.40,
4



156.14, 156.12, 153.84, 147.07, 128.46, 128.38, 126.76, 118.43, 114.47, 114.45,
110.83, 110.65, 102.27, 102.09, 34.40, 31.49. 'F NMR (470 MHz, CDCl;, §): -
104.82.

Step 2: A mixture of compound 1 (3.2 g, 10.0 mmol), 4-tert-butylphenol (1.8 g, 12.0
mmol), and cesium carbonate (4.0 g, 12.5 mmol) in dry N,N-dimethylformamide (100
mL) was stirred and heated at 160 °C for 12 h under nitrogen. When cooling to room
temperature, the reaction mixture was extracted with ethyl acetate:petroleum ether
(v:v=1:1) and water. The collected organic layers were dried over anhydrous Na,SO,
and then evaporated under reduced pressure. The crude product was further purified
using silica gel chromatography with petroleum ether as eluent to afford 9-(2-bromo-
3-(4-(tert-butyl)phenoxy)phenyl)-9H-carbazole (compound 2) as a white powder with
a yield of 72%. '"H NMR (500 MHz, Chloroform-d) & 8.16 (dt, J = 7.5, 1.0 Hz, 2H),
7.48 —7.40 (m, 5H), 7.31 (m, 2H), 7.24 (dd, J= 7.5, 1.5 Hz, 1H), 7.14 (dt,J= 8.0, 1.0
Hz, 2H), 7.09 (dd, J = 8.5, 1.5 Hz, 1H), 7.07 — 7.03 (m, 2H), 1.35 (s, 9H). '*C NMR
(125 MHz, CDCls) 6 156.42, 153.81, 147.13, 140.73, 138.56, 128.76, 126.84, 125.93,
125.16, 123.26, 120.34, 120.00, 119.01, 118.49, 116.06, 110.11, 34.41, 31.48.

Step 3: To a solution of compound 2 (1.9 g, 4.0 mmol) in dry tert-butylbenzene (40
mL), fert-butyllithium (1.3 M, 6.2 mL, 8.0 mmol) was added drop by drop at 0 °C.
After stirring for 2 h at 60 °C, the reaction mixture was cooled to 0 °C and boron
tribromide (0.77 mL, 8.0 mmol) was added, then the reaction mixture was allowed to
return to room temperature and stirred for another 1 h. N,N-diisopropyl-ethylamine

(1.4 mL, 8.0 mmol) was added at 0 °C and then the mixture was allowed to room



temperature and stirred 1 h. After stirring for 24 h at 140 °C, the mixture was then
quenched by slow addition of 5 mL N,N-diisopropyl-ethylamine. The resulting
mixture was extracted with dichloromethane and water, and then the combined
organic layer was concentrated by evaporation under reduced pressure. The residue
was further purified by silica gel chromatography (eluent:dichloromethane/petroleum
ether = 1:5) to give CzBNO as a yellow powder with yield of 30%. 'H NMR (500
MHz, Chloroform-d) 6 8.84 (d, /= 7.5 Hz, 1H), 8.81 (d, J=2.5 Hz, 1H), 8.43 (d, J =
8.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.22 (d, J = 8.5 Hz, 2H), 7.90 (t, J = 8.0 Hz,
1H), 7.79 (dd, J = 8.5, 2.5 Hz, 1H), 7.69 (t, J= 7.5 Hz, 1H), 7.61 (t, J= 7.5 Hz, 1H),
7.52 (d, J = 8.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 1.52 (s,
9H). *C NMR (125 MHz, CDCl;) 8 159.06, 157.65, 144.91, 143.07, 142.21, 139.61,
133.83, 132.81, 131.12, 130.55, 126.93, 126.59, 123.74, 123.67, 122.22, 121.98,
120.77, 117.39, 114.31, 109.46, 107.36, 34.59, 31.70. HRMS (m/z): caled. for

C,sH2,BNO 399.1794; found 400.1862 (M+H)*
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Scheme S2. Synthetic route to DCzBNO.



Step 1: 2-bromo-1,3,4-trifluorobenzene (compound 3) was synthesized according to
the method of compound 1 as a white solid (72% yield). '"H NMR (500 MHz,
Chloroform-d) & 7.30 (d, J = 9.0 Hz, 2H), 7.17 — 7.09 (m, 1H), 7.04 — 6.96 (m, 1H),
6.82 (d, J=9.0 Hz, 2H), 1.30 (s, 9H). *C NMR (125 MHz, CDCI3) $ 157.19, 157.17,
155.24, 155.22, 154.82, 153.40, 153.37, 151.41, 151.39, 145.85, 141.88, 141.86,
141.76, 141.74, 126.52, 115.87, 115.80, 115.70, 115.63, 114.69, 112.37, 112.31,
112.18, 112.12, 107.11, 107.09, 106.92, 106.90, 34.26, 31.49. °F NMR (470 MHz,
CDCly) 6 -109.67, -109.70, -129.15, -129.18.

Step 2: 9,9'-(2-bromo-3-(4-(tert-butyl)phenoxy)-1,4-phenylene)bis(9H-carbazole)
(compound 4) was synthesized according to the method of compound 2 as a gray solid
(63% yield).

Step 3: DCzBNO was synthesized according to the method of CzBNO as a yellow
powder (yield 32%).'H NMR (500 MHz, Chloroform-d) & 8.92 (d, J = 7.5 Hz, 1H),
8.83 (d, J = 2.5 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 8.48 — 8.42 (m, 2H), 8.29 (d, J =
7.5 Hz, 1H), 8.25 (d, J = 7.5 Hz, 2H), 8.12 (d, J = 8.5 Hz, 1H), 7.77 (t, J = 7.5 Hz,
1H), 7.67 (t, J= 7.5 Hz, 1H), 7.59 (dd, J = 8.5, 2.5 Hz, 1H), 7.50 (t, /= 7.5 Hz, 1H),
7.40 (t,J=17.5 Hz, 2H), 7.33 (t,J = 7.5 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.93 (d, J =
8.5 Hz, 1H), 1.47 (s, 9H). *C NMR (125 MHz, CDCl;) § 157.05, 154.35, 145.70,
143.24, 141.97, 141.61, 139.73, 133.91, 133.16, 131.43, 130.44, 127.34, 126.89,
125.86, 124.23, 124.13, 123.50, 122.82, 122.59, 121.12, 120.23, 119.74, 118.09,
117.85, 114.45, 110.34, 107.98, 34.61, 31.63. HRMS (ESI) m/z calcd for

C4()H3,()BN20+ (1V[+H)Jr 56524457, found 565.24438.
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Scheme S3. Synthetic route to TCzBNO.
Step 1: 1-(2-bromo-4-(tert-butyl)phenoxy)-2.,4,5-trifluorobenzene (compound 5) was
synthesized according to the method of compound 2 as a crude white solid (80%

yield) and directly used in the following step.

Step 2: 9,9',9"-(5-(2-bromo-4-(tert-butyl)phenoxy)benzene-1,2,4-triyl)tris(9H-
carbazole) (compound 6) was synthesized under the same conditions to that of
compound 2, using compound 1 (3.59 g, 10 mmol), cesium carbonate (3.58g, 11
mmol), and carbazole (6.69 g, 40 mmol) with a yield of 64%. '"H NMR (500 MHz,
Chloroform-d) 6 8.19 (d, J= 8.0 Hz, 2H), 8.08 (d, /= 3.5 Hz, 1H), 7.82 (m, 4H), 7.69
(dd, J = 8.0, 3.0 Hz, 2H), 7.61 — 7.55 (m, 2H), 7.52 (t, J = 2.0 Hz, 1H), 7.43 — 7.32
(m, 5H), 7.31 — 7.27 (m, 2H), 7.22 (dt, J = 8.5, 2.0 Hz, 1H), 7.16 — 7.07 (m, 8H), 7.05
(d, J=8.5Hz, 1H), 1.23 (s, 9H).

Step 3: TCzBNO was synthesized under the same conditions to that of CzBNO as a
orange powder (yield 25%). 'H NMR (500 MHz, Chloroform-d) 6 8.87 (d, J= 7.5 Hz,
1H), 8.79 (d, J = 2.5 Hz, 1H), 8.42 — 8.29 (m, 2H), 8.22 (d, J = 7.5 Hz, 2H), 7.99 (dd,

J=17.0, 1.5 Hz, 2H), 7.78 (m, 2H), 7.66 (dd, J = 8.5, 2.5 Hz, 1H), 7.40 (m, 2H), 7.37



—7.30 (m, 4H), 7.22 — 7.14 (m, 4H), 7.10 (d, J = 7.5 Hz, 2H), 7.03 (d, J = 8.5 Hz,
1H), 6.88 (m, , 2H), 6.37 (td, J = 7.5, 7.0, 1.0 Hz, 1H), 1.49 (s, 9H). '*C NMR (125
MHz, CDCls) § 156.96, 153.00, 146.18, 144.36, 141.36, 139.46, 138.75, 135.82,
133.98, 132.40, 131.66, 130.84, 126.24, 126.02, 125.32, 125.18, 125.13, 124.59,
123.86, 123.63, 123.07, 122.28, 120.35, 120.31, 120.18, 120.03, 119.64, 119.00,
117.79, 113.78, 110.30, 109.10, 34.67, 31.63. HRMS (ESI) m/z caled for

Cs;H37,BN;O0" (M+H)* 730.30242, found 730.30237.

2. Supplementary Figures
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Figure S4. '"H NMR of compound 2.
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Figure S19. Frontier molecular orbitals of DCzBNO.
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Figure S21. Natural transition orbitals (NTO) of CzBNO, DCzBNO, and TCzBNO.
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Figure S22. Solvatochromic effects of (a) DCzBNO and (b) TCzBNO: PL spectra in
different solvents.
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Figure S23. Transient photoluminescence spectra of (a) CzBNO, (b) DCzBNO, and

(¢) TCzBNO in toluene (1 x 10~ M) at room temperature.
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Figure S24. Low-temperature (77 K) fluorescence and phosphorescence spectra of (a)

26DCZPPy: 5 wt% DCzBNO and (b) 26DCzPPy: 5 wt% TCzBNO doped films.
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Figure S25. (a) PL, (b) (c) transient PL spectra of CZBNO, DCzBNO, and TCzBNO

doped in 26DCzPPy host with 5 wt% concentration.
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Figure S26. Transient PL spectra of CzBNO, DCzBNO, and TCzBNO ternary film

consisting of 26DCzPPy host (79 wt%), 3Cz2CN sensitizer (20 wt%), and the

corresponding emitter (1 wt%).
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Figure S28. CV curves of DCzBNO and TCzBNO.
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Figure S29. EL performance of non-sensitized device based on DCzBNO emitter with
different doping concentrations: (a) EL spectra with different doping concentrations
recorded at 7 V, (b) EQE-luminance curve, (c) J-V-L curve, (d) EL spectra with 5%

concentration at different driving voltages.
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Figure S30. EL performance of non-sensitized device based on TCzBNO emitter with

different doping concentrations: (a) EL spectra with different doping concentrations

recorded at 7 V, (b) EQE-luminance curve, (c) J-V-L curve, (d) EL spectra with 5%

concentration at different driving voltages.
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3. Table

Table S1. FWHM values of the representative B/N/O type MR-TADF emitters with

single boron.

compound Molecular structure FWHM (nm)a! Ref.
DCzBNO JES 36/ 47 /48 This work
O “Cx
()
TCzBNO B Ei 48/ 48 / 48 This work
@ N
O N]@(N O
&
B-0-Cz A, 27/ - 163 [1]
B-O-dmAc Q% 38/ - /44 [1]
? &
B-O-dpAc ® 38/ - /42 []
@§
B-O-dpa @B’? 28/ -/32 [1]
©
DMACBNO 4 2; 34/ 41 /41 2]
B O
SASS
DPAcBNO ® 33/39 /37 2]
ol
SasS
CzBNO & $ 23/30/36 2]
¢y N{jn
CzBO B,@ 26/29/30 [3]
@ N@Tﬁ
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BNO-DPAC $ 20/ 42 /30 [4]

BNO-DMAC O JES 21/ 56/ 45 [4]

BNO-/BuDMAC b 5 81/ 92/ 75 [4]

"@

[a] The values represent the FWHMSs of the reported emitters in dilute solution, doped

film, and EL devices, respectively.
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