Supporting Information

Realizing enhance thermoelectric performance in n-type Mg₃(Bi,Sb)₂-based film

Sahiba Bano^a, Peng Ying^a, Takashi Aizawa^a, Raju Chetty^a and Takao Mori^{a,b*}

^aResearch Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan

^bGraduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

*Corresponding author- MORI.Takao@nims.go.jp

Figure SI. 1: XRD patterns of synthesized target with composition Mg_{3.2}Bi_{1.5}Sb_{0.5.}

Figure SI. 2: XRD patterns obtained for films S1, S2, S3 and S4.

Figure SI. 3: SEM image for S1 deposited at room temperature showing Bi-rich region (marked by yellow arrow).

Figure SI 4: (a-b) FESEM micrograph with (c-e) elemental mappings and (f) EDS spectra for S5 ($T_D = 200 \text{ °C}$).

Figure SI. 5: SEM image at (a) low magnification with 10 μ m scale bar, (b-f) high magnification with 1 μ m scale bar and inset table of elemental's composition for each spectrum (marked by magenta rectangle) of R2 film.

Figure SI. 6: Deposition power (P_D) dependence Seebeck coefficient and electrical conductivity at room temperature for S1, S2, and S3.