Supporting information

Melamine foam-induced isotropic graphite foam for effective thermal management and electromagnetic interference shielding

Xing Guo^{a,b,c}, Yaxiong Liu^{a,b,c}, Sufang Yang^{a,b,c}, Hui Jia^a, Long Gao^a, Xiaodong Tian^{a,c}, Zechao Tao^{a,c,d}, Jinxing Liu^a, Xi Yan^{a,c*}, Zhanjun Liu^{a,c,d*}

a CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese

Academy of Sciences, Taiyuan, 030001, China

b University of Chinese Academy of Sciences, Beijing, 100049, China

c Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing, 100049, China

d Dalian National Laboratory for Clean Energy, Dalian 116023, China

E-mail address: zjliu03@sxicc.ac.cn and yanxi@sxicc.ac.cn

Properties	Units	AR MP
Softening point	°C	282
Toluene soluble content	wt.%	45.0
Pyridine soluble content	wt.%	48.5
N-methyl-pyrrolidone soluble content	wt.%	79.5
Ash content	wt.%	0.03
Volatile content	wt.%	28.4
Mesophase content	wt.%	100

 Table S1. Properties of AR MP.

Equations

1 Scherrer equation

$$L = \frac{k\lambda}{\beta \cos\theta} \tag{S1}$$

where *L* indicates crystallite size $({}^{L}a)$ and stack height $({}^{L}c)$ in the sample, λ is the X-ray wavelength (0.15406 nm), d₀₀₂ is the graphite interlayer spacing, β and θ are the full-width half maximum of the diffraction peak and Bragg diffractive angle respectively

1 Bragg equation

$$d_{002} = \frac{\lambda}{2sin\theta} \tag{S2}$$

 d_{002} is the graphite interlayer spacing

 λ is the X-ray wavelength (0.15406 nm)

2 Mering-Maire formula

$$G(\%) = \frac{0.3440 - d_{(002)}}{0.3440 - 0.3354} \times 100$$
(S3)

0.3440: the interlayer spacing of the fully non-graphitized carbon (nm)

0.3354: the interlayer spacing of the ideal graphite crystallite

 $d_{(002)}$: the interlayer spacing derived from XRD (nm)

Fig. S1. Polarizing microscope images of ARMP

Fig. S2. (a)-(b) MF template before NaOH treatment (c)-(d) MF template after NaOH treatment

Fig.S3. The digital photos of GF taken from a camera

Fig.S4. Comparison of SE_T (a), SE_A (b), and SE_R (c) at X-band of GF-40 in different thicknesses.