A Freezing-Tolerant Superior Proton Conductive Hydrogel Comprised of Sulfonated Poly(ether-ether-ketone) and Poly(vinyl-alcohol) as Quasi-Solid-State Electrolyte in Proton Battery

Hao Dong,^a Lin-Lin Wang,^a Zhi-Rong Feng,^a Jie Song,^b Qiao Qiao,^{*a,b} Yu-Ping Wu,^b
and Xiao-Ming Ren^{*a,c}
^a College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing
211816, P. R. China
^b School of Energy Science and Engineering, Nanjing Tech University, Nanjing
211816, P. R. China
^c State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing

210023, P. R. China

Table of Contents Section 1 Synthesis of nickel ferrocyanide (Ni-PBA) and molybdenum (VI) oxide (MoO₃) Section 2 Figure S1-S8 Table S1-S5

Reference

Section 1

Synthesis of nickel ferrocyanide (Ni-PBA) and molybdenum (VI) oxide (MoO₃)

The synthesis of Ni-PBA was based on a co-precipitation reaction in an aqueous solution.¹ In a typical procedure, 3 mmol $K_4Fe(CN)_6\cdot 3H_2O$ and 0.16 mol KCl were dissolved in 150 mL deionized water under stirring to obtain a solution A. The green NiCl₂ solution (150 mL 0.04 mol L⁻¹) was added dropwise into solution A under vigorously stirring at 70°C. After 6 hours of reaction, the gray-green precipitates were washed and centrifuged with deionized water and ethanol for multiple times and then vacuum-dried overnight at 60 °C.

 α -MoO₃ was synthesized via a modified hydrothermal method.² Typically, 1.0 g (NH₄)₆Mo₇O₂₄·4H₂O was dissolved in 30 mL DI water, then 10 mL HNO₃ solution (3 M) was added to adjust the pH. After stirring for 20 min, the transparent colorless solution was transferred into a Teflon-lined autoclave and heated at 180 °C for 24 hours. The white precipitate was obtained by centrifugation and washed with DI water and ethanol for several times, and then vacuum-dried overnight at 60 °C.

Section 2

Figure S1. (a) TG plots and their first derivative curves of PEEK and SPEEK, DSC curves of (b) pure PVA hydrogel and (c) SPEEK@PVA-1 hydrogel.

Figure S2. Successive tensile loading–unloading curves which were done sequentially at 20%, 40%, 60% and 80% of maximum strain at room temperature for SPEEK@PVA-X hydrogels (a) X = 0, (b) X = 1 and (c) X = 1.7. Tensile loading–unloading curves at 20%, 40% and 80% of maximum strain at room temperature for SPEEK@PVA-X hydrogels (d) X = 0, (e) X = 1 and (f) X = 1.7, and five successive cyclic processes of tensile loading–unloading were performed at each strain.

Figure S3. Temperature-dependent Nyquist plots of SPEEK@PVA-X hydrogels. (a) X = 0, (b) X

= 1 and (c) X = 1.7.

Figure S4. SEM images (a, d), PXRD patterns (b, e) and FT-IR spectra (c, f) for Ni-PBA and MoO₃. Ni-PBA was prepared by a precipitation reaction in an aqueous solution, the intense diffraction peaks in PXRD pattern of Ni-PBA, appeared in the 20 range of 5–50°, correspond to the (2 0 0), (2 2 0), (4 0 0), (4 4 0) and (6 2 0) crystallographic plane reflections, and are good consistent with the standard PXRD card (JCPDS no. 20-0915). The intense band at 2088 cm⁻¹ in FT-IR spectrum is the characteristic band of v(C=N) related to cyanide-coordinated Fe²⁺, the vibration band at 3375 cm⁻¹ arises from H–O stretching of interstitial water in Ni-PBA. The MoO₃ was synthesized via a modified hydrothermal method, the as-prepared nanobelt MoO₃ has a stable layered orthorhombic structure according to PXRD card (JCPDS no. 35-0609). The band at 996 cm⁻¹ in FT-IR spectrum of nanobelt MoO₃ was associated with the terminal v(Mo = O), which was an indication of layered MoO₃ phase. The bands at 867 cm⁻¹ and 558 cm⁻¹ are assigned to the Mo⁶⁺ stretching vibrations and bending vibrations of the Mo-O-Mo units.

Figure S5. Electrochemical performance of proton battery with Ni-PBA and Pt electrode and SPEEK@PVA-1.7 hydrogel electrolyte. (a) Photograph of Swagelok cell (b) GCD curves and (c) Cycling and coulombic performance at a current of 1 A g⁻¹ during 1000 cycles.

Figure S6. Electrochemical performance of full proton battery with 1 M H_2SO_4 electrolyte. (a) GCD curves and (b) Cycling and coulombic performance at a current of 1 A g⁻¹ during 500 cycles.

Figure S7. Electrochemical performance of full proton battery with SPEEK@PVA-1.7 hydrogel electrolyte under -20 °C. (a) GCD curves and (b) Cycling and coulombic performance at a current of 0.1 A g⁻¹ during 100 cycles.

Figure S8. (a) LSV curves of SPEEK@PVA-1.7 hydrogel at the scan rate of 1 mV s⁻¹. (b) Photograph of SPEEK@PVA-1.7 hydrogel after charging-discharging 500 cycles at a current of 1 A g⁻¹. (c) Photograph of super-adhesive properties of the electrode-hydrogel interface (load weight is 425 g).

Table S1. The position of the absorption peak of each group in PEEK, SPEEK, and the corresponding vibration mode of the infrared spectrum.³⁻⁵

	Wavenumber / cm ⁻¹	Group	Mode of vibration
PEEK	1646	C=O	ν
	1487	C-C	ν
SPEEK	1642	C=O	ν
	1501	C-C	ν
	1468	C-C	ν
	1250	O=S=O	v_{as}
	1075	O=S=O	ν_{s}
	708	S-O	ν

Table S2.1H NMR spectrum of chemical shifts and integral areas of H at different positions.5,6

chemical shift (ppm)	H position	Integral area
7.00-7.07	4, 6	2.00
7.07-7.15	13'	1.17
7.15-7.20	15, 19	2.10
7.20-7.26	12'	1.09
7.26-7.30	9, 10, 12, 13	0.24
7.49-7.54	10'	1
7.77-7.80	16, 18	2.09
7.80-7.88	3, 7	2.28

Table S3. The elemental analysis results of PEEK and SPEEK

	,				
Sample	N (%)	C (%)	H (%)	S (%)	S / C^*
PEEK	0.00	77.86	4.102	0.000	/
SPEEK	0.00	55.15	3.704	7.121	0.129

*The sulfonated degree (n) is obtained by calculating the element ratio of C and S from the equation S / C=32n / (12×19), where the molar masses of C, S are 12 g/mol and 32 g/mol, respectively.

Table S4. Proton conduction of SPEEK@PVA-1.7 in comparison with other high-performing SPEEK-based proton conductors

SPEEK-based proton conductor	conductivity (mS cm ⁻¹)	conditions	Ref
C-SPEEK/HPW/GO	119.04	80°C	7
SiW9MoV2/rGO/SPEEK	10.7	16°C and 70% RH	8
SPEEK/CrPSSA 40 sIPN	1	80°C and 25%RH	9
SPEEK/SRGO-1.0	8.6	80°C and 50% RH	10
SPEEK/ZCN-2.5	50.24	120°C and 30%RH	11
SPEEK/P@MWCNT	64	25°C and 100%RH	12
SPEEK/HMN-6	70	25°C and 100%RH	13
SPEEK/P-C ₃ N ₄	0.91	20°C and 45%RH	14
SPEEK/CeO ₂ -ATiO ₂	17.06	60°C and 20%RH	15
SDEEK ODVA 17	51.49	25°C	This work
SPEEK@PVA-1./	101.2	70°C	This work

Cathode	Electrolyte	Engagers dangitas *	Cycling	Def	
Anode	(state)	Energy density	stability	Kel	
CuFe-TBA	9.5 M H ₃ PO ₄	49 mAh g $^{-1}$ and 44 mAh g $^{-1}$	85% after 1000	ſ	
MoO ₃	(Liquid)	$(0.025 \mbox{ A g}^{\mbox{-1}} \mbox{ and } 5 \mbox{ A g}^{\mbox{-1}})$	cycles at 2 A g ⁻¹	2	
Ni-PBA	1 M HCl+20 M ZnCl ₂	$62 \ mAh \ g^{\text{-1}}$ and $38 \ mAh \ g^{\text{-1}}$	76.1% after 400	16	
MoO ₃	(Liquid)	$(0.5 \text{ A g}^{-1} \text{ and } 1\text{ A g}^{-1})$	cycles at 1A g ⁻¹	16	
	0.05 M U SO	20.7 m A h a-1	76.1% after		
	$(1 - 1)^{-1}$	(1 A	3000 cycles at	17	
DPPZ	(Liquid)	(1 A g^{-1})	6A g ⁻¹		
DD		45 A.L] J. 21 A.L]	74% after 3000		
	$1 \text{ M KNO}_3 + 10 \text{ MM HNO}_3$	45 mAn g \cdot and 21 mAn g \cdot	cycles at 6.8 A	18	
$\Pi_3 C_2 \Pi_x$ wixene	(Liquid)	$(0.7 \text{ A g}^{-1} \text{ and } 0.8 \text{ A g}^{-1})$	g-1		
CuFe-TBA	$2 \text{ M H}_2 \text{SO}_4$	50 mAh g ⁻¹	74% after 1000	10	
WO ₃	(Liquid)	(0.6 A g^{-1})	cycles	19	
CuFe-TBA	1 M H ₃ PO ₄ in MeCN	48 mAh g ⁻¹	48% after 100	20	
MoO ₃	(Liquid)	(0.1 A g ⁻¹)	cycles	20	
ZnFe-TBA	1 M H ₃ PO ₄ in MeCN	48 mAh g ⁻¹	83% after	20	
MoO ₃	(Liquid)	(0.1 A g^{-1})	80 cycles	20	
	[Zn ₃ (H ₂ PO ₄) ₆ (H ₂ O) ₃](1,2,	55 41 -1 110 41 -1			
CuFe-IBA	3- benzotriazole) glass	$55 \text{ mAn g}^{-1} \text{ and } 12 \text{ mAn g}^{-1}$	-	21	
MoO ₃	(Solid)	$(0.01 \text{ A g}^{-1} \text{ and } 0.05 \text{ A g}^{-1})$			
		66.2 mAh g ⁻¹ and 49.6			
NI-PBA	SPEEK@PVA Hydrogel	mAh g ⁻¹	77% after 500	This	
MoO ₃	(Quasi-solid)	(0.1 A g ⁻¹ and 1 A g ⁻¹)	cycles at 1 A g ⁻¹	work	

Table S5. A comparison of the Ni-PBA/SPEEK@PVA-1.7/MoO₃ cell with the representative proton batteries, in terms of energy density and cycling stability

*Energy density was based on the mass of the limiting electrode.

References

- (1) Y. Yuan, D. Bin, X. Dong, Y. Wang, C. Wang and Y. Xia, ACS Sustainable Chem. Eng., 2020, **8**, 3655-3663.
- (2) H. Jiang, W. Shin, L. Ma, J. J. Hong, Z. Wei, Y. Liu, S. Zhang, X. Wu, Y. Xu, Q. Guo, M. A. Subramanian, W. F. Stickle, T. Wu, J. Lu and X. Ji, *Adv. Energy Mater.*, 2020, 10, 2000968.
- (3) W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi and X. Qiu, J. Mater. Chem. A, 2014, 2, 12423-12432.
- (4) Q. Xin, Z. Li, C. Li, S. Wang, Z. Jiang, H. Wu, Y. Zhang, J. Yang and X. Cao, J. Mater. Chem. A, 2015, 3, 6629-6641.
- (5) P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang and S. Kaliaguine, J. Membr. Sci., 2004, 229, 95-106.
- (6) S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, J. Membr. Sci., 2000, 173, 17-34.
- (7) F. Sun, L. L. Qin, J. Zhou, Y. K. Wang, J. Q. Rong, Y. J. Chen, S. Ayaz, Y. U. Hai-Yin and L. Liu, *J. Membr. Sci.*, 2020, 611, 118381.
- (8) H. Wu, H. Cai, Y. Xu, Q. Wu and W. Yan, Mater. Chem. Phys., 2018, 215, 163-167.
- (9) X. Wu, G. He, X. Li, F. Nie, X. Yan, L. Yu and J. Benziger, J. Power Sources, 2014, 246, 482-490.
- (10) X. Qiu, T. Dong, M. Ueda, X. Zhang and L. Wang, J. Membr. Sci., 2017, 524, 663-672.
- (11) H. Sun, B. Tang and P. Wu, ACS Appl. Mater. Interfaces, 2017, 9, 35075-35085.
- (12) Z. Esmaeilzadeh, M. Karimi, A. M. Shoushtari and M. Javanbakht, *Polymer*, 2021, 230, 124067.
- (13) S. Zhai, Z. Lu, Y. Ai, X. Liu, Q. Wang, J. Lin, S. He, M. Tian and L. Chen, J. Membr. Sci., 2022, 645, 120214.
- (14) S. Zhai, H. Song, X. Jia, K. Yang, M. Feng, S. He and J. Lin, J. Power Sources, 2021, 506, 230195.
- (15) H. Ranganathan, M. Vinothkannan, A. R. Kim, V. Subramanian, M.-S. Oh and D. J. Yoo, *Int. J. Energy Res.*, 2022, 46, 9041-9057.
- (16) B. Yang, T. Qin, Y. Du, Y. Zhang, J. Wang, T. Chen, M. Ge, D. Bin, C. Ge and H. Lu, *Chem. Commun.*, 2022, 58, 1550.
- (17) J. Qiao, M. Qin, Y.-M. Shen, J. Cao, Z. Chen and J. Xu, Chem. Commun., 2021, 57, 4307.
- (18) Y. Zhu, Y. Lei, Z. Liu, Y. Yuan and H. N. Alshareef, Nano Energy, 2021, 81, 105539.
- (19) X. Wu, J. J. Hong, W. Shin, L. Ma, T. Liu, X. Bi, Y. Yuan, Y. Qi, T. W. Surta, W. Huang, J. Neuefeind, T. Wu, P. A. Greaney, J. Lu and X. Ji, *Nat. Energy*, 2019, 4, 123-130.
- (20) Y. Xu, X. Wu, H. Jiang, L. Tang, K. Y. Koga, C. Fang, J. Lu and X. Ji, *Angew. Chem. Int. Ed.*, 2020, **59**, 22007-22011.
- (21) N. Ma, S. Kosasang, A. Yoshida and S. Horike, Chem. Sci., 2021, 12, 5818.