Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Phenylene-Bridged Multi-Resonance Cyclic TADF Emitters for High Color Purity Sky-Blue OLEDs with EQE of 30%

Kengo Kumada, Hisahiro Sasabe*, Misaki Matsuya, Takeru Nakamura, Naoto Yoshida, Keigo Hoshi, Junji Kido*

Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan E-mail: h-sasabe@yz.yamagata-u.ac.jp; kid@yz.yamagata-u.ac.jp

Contents

- 1. General Considerations
- 2. Device Fabrication and Characterization
- 3. Synthesis
- 4. Molecular Design and Calculation
- 5. Thermal property
- 6. Photophysical property
- 7. NTO and SOC calculation
- 8. Device perfoemance
- 9. Spectral data
- 10. Reference

1. General Considerations

Quantum chemical calculations were performed using the hybrid DFT functional Becke and Hartree-Fock exchange and Lee Yang and Parr correlation (B3LYP) as implemented by the Gaussian 09 program packages.^[1] Electrons were described by the Pople's 6-31G(d) and 6-31G(d) basis sets for molecular structure optimization and single-point energy calculations, respectively. ¹H NMR, ¹¹B NMR and ¹³C NMR spectra were recorded on JEOL 400 (400MHz) as spectrometer. MS spectrum was obtained using a JEOL JMS-K9 mass spectrometer. TGA was undertaken using a SEIKO EXSTAR 6000 TG/DTA 6200 unit under nitrogen atmosphere at a heating rate of 10 °C min⁻¹. DSC was performed using a Perkin-Elmer Diamond DSC Pyris instrument under nitrogen atmosphere at a heating rate of 10 °C min⁻¹. UV-vis absorption spectra was measured using a Shimadzu UV-2600 spectrophotometer. Photoluminescence spectra were measured using a FluoroMax-2 (Jobin-Yvon-Spex) luminescence spectrometer. The Ip was determined by a PYS under the vacuum $(=10^{-3} \text{ Pa})$.^[2] Transient PL decay curves and time resolved photoluminescence spectra were measured by using a streak camera (C4334 from Hamamatsu Photonics) at 300 K and 6 K. Photoluminescence quantum yield were measured using a Hamamatsu C11347 absolute PL quantum yield spectrometer with an integral sphere at an excitation wavelength of each sample. Natural transition orbitals (NTO) of S_1 and T_n (n = 1, 2) states were calculated using B3LYP functional with 6-31G(d) basis set. SOC matrix elements (ζ) were calculated by using the Breit-Pauli Hamiltonian with an effective charge approximation implemented in the PySOC program ^[3] at the same level of theory. Using singlet-triplet (S_1-T_n) energy gap and corresponding ζ , the rate constants for RISC prosses (k_{RISC}) were calculated according to the reference method^[4].

2. Device Fabrication and Characterization

The substrates were cleaned with ultrapurified water and organic solvents, and then drycleaned for 30 minutes by exposure to UV-O₃. The organic layers were deposited onto the ITO substrates under the vacuum (= 10^{-5} Pa), successively. LiF and Al was patterned using a shadow mask with an array of 2 mm × 2mm openings without breaking the vacuum (= 10^{-5} Pa). The electroluminescent (EL) were taken using an optical multichannel analyzer Hamamatsu Photonics PMA-11. The current density–voltage and luminance– voltage characteristics were measured by using a Keithley source measure unit 2400 and a Minolta CS200 luminance meter, respectively.

3. Synthesis

Scheme S1. Synthesis of OP-BN, Cz-OP-BN, 2Cz-OP-BN

Synthesis of 1b

Carbazole (8.36 g, 50 mmol), cesium carbonate (48.9 g, 150 mmol), dry N,Ndimethylacetamide 100 mL were added to a round bottom flask and stirred 1 hour at room temperature under N₂ flow. Then, 1,2-dibromo-4-fluorobenzene (6.3 mL, 50 mmol) was added and the resultant mixture was stirred 20 hours at 150 °C under N₂ flow. The mixture was extracted with diethyl ether and washed with water. The combined organic extracts were dried over MgSO₄ and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 19 : 1) to obtain **1b** as a white solid. (16.8 g, 83.3 %)

¹H NMR (400 MHz, CDCl₃) : δ 8.13 (d, J = 7.6 Hz, 2H), 7.87 (d, J = 2.8 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.44-7.38 (m, 5H), 7.31 (t, J = 6.9 Hz, 2H) ppm ; MS (ASAP) : m/z = 401 [M+H]⁺

Synthesis of 1c

Carbazole (40.2 g, 100 mmol), cesium carbonate (81.5 g, 250 mmol), dry N,Ndimethylacetamide 500 mL were added to a round bottom flask and stirred 1 hour at room temperature under N₂ flow. Then, 1,2-dibromo-4,5-difluorobenzene (27.2 g, 100 mmol) was added and the resultant mixture was stirred 16 hours at 150 °C under N₂ flow. The mixture was extracted with diethyl ether and washed with water. The combined organic extracts were dried over MgSO₄ and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 9 : 1) to obtain **1c** as a white solid. (49.9 g, 88.1 %)

¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 2H), 7.77-7.74 (m, 4H), 7.13-7.11 (m, 4H), 7.07-7.02 (m, 8H) ppm ; MS (ASAP): m/z = 566 [M+H]⁺

Synthesis of 2a

1,2-Dibromobenzene (5.9 mL, 50 mmol), 3-chlorobenzoic Acid (18.8 g, 120 mmol), 2M K₂CO₃ aq (100 mL), toluene 200 mL, ethanol 100 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(PPh₃)₄ (2.89 g, 2.5 mmol) was added and the resultant mixture was stirred 23 hour at reflux temperature under N₂ flow. The mixture was extracted with toluene and washed with water. The combined organic extracts were dried over MgSO₄ and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane) to obtain **2a** as a white solid. (9.2 g, 61.1 %) a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.46-7.39 (m, 4H), 7.21-7.19 (m, 4H), 7.15-7.11 (m, 2H), 6.95-6.92 (m, 2H) ppm ; MS (ASAP): m/z = 302 [M+H]⁺

Synthesis of 2b

1b (20.7 g, 51.7 mmol), 3-chlorobenzoic Acid (19.4 g, 124 mmol), 2M K₂CO₃ aq (100 mL), toluene 200 mL, ethanol 100 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(PPh₃)₄ (3.0 g, 2.6 mmol) was added and the resultant mixture was stirred 22 hour at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate and washed with water. The combined organic extracts were dried over MgSO4 and evaporated to dryness. The resulting solid was dissolved in reflux toluene and filtered through pad of silica gel. After the filtrate was concentrated, the resulting solid was purified by recrystallization using cyclohexane to obtain **2b** a white solid. (19.4 g, 80.6 %)

¹H NMR (400 MHz, CDCl₃) : 8.16 (d, J = 8.3 Hz, 2H), 7.67-7.63 (m, 3H), 7.53 (d, J = 8.3 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.33-7.31 (m, 3H), 7.27 (s, 1H), 7.25-7.16 (m, 4H), 7.04 (t, J = 6.5 Hz, 2H) ppm ; MS (ASAP) : m/z = 463 [M+H]⁺

Synthesis of 2c

1c (49.8 g, 88 mmol), 3-chlorobenzoic Acid (34.4 g, 220 mmol), 2M K₂CO₃ aq (120 mL), toluene 240 mL, ethanol 120 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(PPh₃)₄ (5.0 g, 4.4 mmol) was added and the resultant mixture was stirred 19 hour at reflux temperature under N₂ flow. (5) was purified according to the similar method to 2c and obtained as white solid. (23.7 g, 42.7 %)

¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 2H), 7.81-7.77 (m, 6H), 7.16-7.13 (m, 6H), 7.07 (td, J = 6.6, 3.8 Hz, 12H) ppm ; MS (ASAP): m/z = 628 [M+H]⁺

Synthesis of 3a

2a (9.17 g, 30.6 mmol), aniline (16.2 mL, 122.4 mmol), NaO'Bu (8.82 g, 91.8 mmol), dry toluene 100 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, $Pd_2(dba)_3$ (1.37 g, 1.5 mmol), [('Bu)_3PH]BF_4 (1.31 g, 4.5 mmol) was added and the resultant mixture was stirred 23 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 2 : 1) to afford **3a** (7.64 g, 60.6 %) as a white solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.41-7.37 (m, 4H), 7.28 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 7.4 Hz, 4H), 6.93-6.83 (m, 8H), 6.74 (d, J = 7.6 Hz, 4H), 5.78 (s, 2H) ppm ; MS (ASAP): m/z = 413 [M+H]⁺

Synthesis of 3b

2b (18.6 g, 40 mmol), aniline (14.6 mL, 160 mmol), NaO^tBu (15.4 g, 160 mmol), dry toluene 200 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd₂(dba)₃ (1.8 g, 2.0 mmol), [(^tBu)₃PH]BF₄ (1.74 g, 6.0 mmol) was added and the resultant mixture was stirred 64 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was washed by methanol to afford **3b** (11.6 g, 50.2 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.8 Hz, 2H), 7.62-7.60 (m, 2H), 7.55 (dd, J = 8.2, 2.3 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.34-7.25 (m, 4H), 7.17 (m, 4H), 7.03-6.85 (m, 8H), 6.77-6.72 (m, 4H), 5.67 (s, 2H) ppm ; MS (ASAP):m/z = 579 [M+H]⁺

Synthesis of 3c

2c (23.7 g, 37.6 mmol), aniline (13.7 mL, 150 mmol), NaO^tBu (14.4 g, 150 mmol), dry toluene 500 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd₂(dba)₃ (1.7 g, 1.9 mmol), [(^tBu)₃PH]BF₄ (1.6 g, 5.6 mmol) was added and the resultant mixture was stirred 17 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 4 : 1) to afford **3c** (22.3 g, 80.1 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 2H), 7.81-7.78 (m, 4H), 7.34 (t, J = 7.8 Hz, 2H), 7.28-7.26 (m, 2H), 7.20 (t, J = 7.8 Hz, 4H), 7.12-7.00 (m, 14H), 6.94-6.89 (m, 4H), 6.77 (d, J = 7.8 Hz, 4H), 5.72 (s, 2H) ppm ; MS (ASAP):m/z = 743 [M+H]⁺

Synthesis of 4a

3a (4.13 g, 10 mmol), 1,2,3-tribromobenzene (3.15 g, 10 mmol), NaO'Bu (2.88 g, 30 mmol), dry toluene 1000 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(dba)₂ (230 mg, 0.4 mmol), [('Bu)₃PH]BF₄ (93 mg, 0.32 mmol) was added and the resultant mixture was stirred 18 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/DCM = 4 : 1) to afford **4a** (2.4 g, 45.6 %) as a pale yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.60 (t, J = 8.3 Hz, 1H), 7.30 (td, J = 16.5, 8.5 Hz, 12H), 7.15 (q, J = 7.8 Hz, 4H), 7.05 (q, J = 7.1 Hz, 2H), 7.00 (t, J = 8.3 Hz, 2H), 6.68 (d, J = 6.2 Hz, 2H), 6.33 (s, 2H) ppm ; MS : m/z 566 [M+H]⁺

Synthesis of 4b

3b (5.8 g, 10 mmol), 1,2,3-tribromobenzene (3.15 g, 10 mmol), NaO^tBu (2.9 g, 30 mmol), dry toluene 1000 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(dba)₂ (230 mg, 0.4 mmol), [(^tBu)₃PH]BF₄ (93 mg, 0.32 mmol) was added and the resultant mixture was stirred 17 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 4 : 1) to afford **4b** (1.25 g, 17.1 %) as a pale yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 8.15 (d, J = 7.8 Hz, 2H), 7.60-7.51 (m, 5H), 7.45-7.41 (m, 2H), 7.37-7.15 (m, 15H), 7.11-7.04 (m, 4H), 6.86-6.76 (m, 2H), 6.46 (s, 2H) ppm ; MS : m/z 732 [M+H]⁺

Synthesis of 4c

3c (7.43 g, 10 mmol), 1,2,3-tribromobenzene (3.15 g, 10 mmol), NaO'Bu (2.9 g, 30 mmol), dry toluene 1000 mL were added to a round bottom flask and nitrogen bubbled through the mixture for 1 hour. Then, Pd(dba)₂ (230 mg, 0.4 mmol), [('Bu)₃PH]BF₄ (93 mg, 0.32mmol) was added and the resultant mixture was stirred 23 hours at reflux temperature under N₂ flow. The mixture was extracted with ethyl acetate, and washed with water. The combined organic extracts were dried over MgSO₄, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/DCM = 4 : 1) to afford **4c** (1.34 g, 15.0 %) as a pale yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.90-7.82 (m, 4H), 7.75 (s, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.35-7.30 (m, 9H), 7.25-7.14 (m, 8H), 7.11-7.03 (m, 10H), 6.93-6.88 (m, 2H), 6.56 (s, 2H) ppm ; MS : m/z 897 [M+H]⁺

Synthesis of OP-BN

To a solution of **4a** (2.76 g, 4.88 mmol) in tert-butyl benzene was slowly added n-BuLi (1.58 M in hexane, 6.14 mL, 9.76 mmol) at -40 °C. After reacting for 30 minutes at room temperature and 3 h at 60 °C , BBr₃ (1.0 M in CH₂Cl₂, 9.76 mL, 9.76 mmol) was slowly added at -40 °C, and then the mixture was stirred at room temperature for 3 h. N,N-Diisopropylethylamine (1.70 mL, 9.76 mmol) was added at -40 °C and then the reaction mixture was allowed to warm to room temperature. After stirring at 120 °C for 64 h, the reaction mixture was cooled to room temperature. the solvent was removed in vacuo. The residue was dissolved in toluene and then filtered with a pad of silica gel (eluent: toluene). The resulting solid was purified by chromatography on silica gel (eluent: hexane/DCM = 4 : 1) to afford **OP-BN** (0.77 g, 32.0 %) as a yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.72-7.69 (m, 4H), 7.61 (dd, J = 11.4, 7.2 Hz, 2H), 7.53 (q, J = 4.6 Hz, 2H), 7.49-7.41 (m, 6H), 7.38 (q, J = 2.5 Hz, 4H), 7.23 (td, J = 8.1, 4.6 Hz, 1H), 6.68 (q, J = 3.9 Hz, 2H), 6.04 (q, J = 4.4 Hz, 2H) ppm ; ¹³C NMR (100 MHz, CD₂Cl₂) δ 147.9, 146.8, 146.7, 142.4, 140.4, 134.5, 132.3, 131.2, 130.8, 130.6, 128.6, 127.6, 121.9, 116.1, 104.4 ppm ; ¹¹B NMR (190 MHz, CD₂Cl₂) δ 45.7 ppm ; MS : m/z 494 [M+H]⁺ ; Anal calcd for C₃₆H₂₃BN₂: C, 87.46; H, 4.69; N, 5.67 %. Found: C, 87.60; H, 4.83; N, 5.80 %

Synthesis of Cz-OP-BN

To a solution of **4b** (2.82 g, 3.86 mmol) in tert-butyl benzene was slowly added n-BuLi (2.6 M in hexane, 3.0 mL, 7.72 mmol) at -40 °C. After reacting for 30 minutes at room temperature and 3 h at 60 °C , BBr3 (1.0 M in CH2Cl2, 7.72 mL, 7.72 mmol) was slowly added at -40 °C, and then the mixture was stirred at room temperature for 3 h. N,N-Diisopropylethylamine (1.34 mL, 7.72 mmol) was added at -40 °C and then the reaction mixture was allowed to warm to room temperature. After stirring at 120 °C for 64 h, the reaction mixture was cooled to room temperature. the solvent was removed in vacuo. The residue was dissolved in toluene and then filtered with a pad of silica gel (eluent: toluene). The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 5 : 1) to afford **Cz-OP-BN** (0.88 g, 34.5 %) as a yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 8.18 (s, 2H), 7.80-7.24 (m, 24H), 6.73 (d, J = 31.7 Hz, 2H), 6.08 (d, J = 15.8 Hz, 2H) ppm ; ¹³C NMR (100 MHz, CD₂Cl₂) δ 147.2, 147.0, 146.8, 142.4, 142.3, 142.1, 141.0, 139.7, 136.8, 136.4, 132.5, 132.4, 131.2, 131.0, 130.6, 130.5, 128.7, 126.0, 125.7, 123.4, 122.1, 120.3, 120.0, 116.6, 116.4, 109.9, 104.6 ppm ; 11B-NMR (190 MHz, CD2Cl2) δ 42.4 ppm ; MS : m/z 659 [M+H]⁺ ; Anal calcd for C48H30BN3: C, 87.41; H, 4.58; N, 6.37 %. Found: C, 87.61; H, 4.81; N, 6.50 %

Synthesis of 2Cz-OP-BN

To a solution of **4c** (1.34 g, 1.5 mmol) in tert-butyl benzene was slowly added n-BuLi (2.6 M in hexane, 1.2 mL, 3.0 mmol) at -40 °C. After reacting for 30 minutes at room temperature and 3 h at 60 °C , BBr3 (1.0 M in CH2Cl2, 3.p mL, 3.0 mmol) was slowly added at -40 °C, and then the mixture was stirred at room temperature for 3 h. N,N-Diisopropylethylamine (0.52 mL, 3.0 mmol) was added at -40 °C and then the reaction mixture was allowed to warm to room temperature. After stirring at 120 °C for 66 h, the reaction mixture was cooled to room temperature. the solvent was removed in vacuo. The residue was dissolved in toluene and then filtered with a pad of silica gel (eluent: toluene). The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 7 : 3) to afford **2Cz-OP-BN** (0.20 g, 18.0 %) as a yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.99 (d, J = 8.3 Hz, 2H), 7.85 (t, J = 7.6 Hz, 4H), 7.71 (q, J = 7.8 Hz, 4H), 7.61 (q, J = 7.6 Hz, 2H), 7.56 (t, J = 7.9 Hz, 2H), 7.44-7.26 (m, 11H), 7.09 (q, J = 7.8 Hz, 8H), 6.73 (t, J = 8.3 Hz, 2H), 6.10 (t, J = 8.8 Hz, 2H) ppm ; ¹³C NMR (100 MHz, CD₂Cl₂) δ 146.9, 146.8, 146.2, 142.3, 141.6, 140.1, 136.2, 133.1, 132.5, 131.2, 131.1, 130.5, 128.7, 125.6, 123.3, 122.2, 119.9, 116.9, 110.0, 104.7 ppm ; ¹¹B NMR (190 MHz, CD₂Cl₂) δ 42.2 ppm ; MS : m/z 825 [M+H]⁺ ; Anal calcd for C₆₀H₃₇BN₄: C, 87.37; H, 4.52; N, 6.79 %. Found: C, 87.25; H, 5.72; N, 7.00 %

4. Molecular Design

Figure S1. (a) Chemical structure and optimized structure of DABNA-1 and OP-BN, (b) front view, (c) side view

5. Thermal property

Figure S2. TGA curve of OP-BN

Figure S3. TGA curve of Cz-OP-BN

Figure S4. TGA curve of 2Cz-OP-BN

Figure S5. DSC curve of OP-BN

Figure S6. DSC curve of Cz-OP-BN

Figure S7. DSC curve of 2Cz-OP-BN

6. Photophysical property

Figure S8. UV-vis absorption spectra of toluene solution

	λ_{abs}	$\lambda_{ m PL}$	FWHM	PLQY ^[a]	
	[nm]	[nm]	[nm]	[%]	
OP-BN	453	466	31	84.0	
Cz-OP-BN	456	467	27	65.7	
2Cz-OP-BN	459	470	26	61.4	

Table S1. Summary of photophysical properties in toluene

[a] Photoluminescence quantum yield of 10^{-5} M toluene solution.

Figure S9. UV-vis absorption spectra of 8wt% emitter doped-mCBPCN film (Thickness : 30 nm)

Figure S10. PLQYs of **DABNA-1**, **OP-BN**, **Cz-OP-BN** and **2Cz-OP-BN** doped mCBPCN films. (Thickness : 30 nm, λ_{ex} : 340 nm)

		· /		
	DABNA-1	OP-BN	Cz-OP-BN	2Cz-OP-BN
3 wt%	94.3 %	97.0 %	100 %	100 %
5 wt%	86.2 %	100 %	100 %	100 %
8 wt%	75.6 %	84.2 %	99.2 %	100 %
10 wt%	59.4 %	80.6 %	89.2 %	83.7 %

Table S2. PLQYs of **DABNA-1, OP-BN, Cz-OP-BN** and **2Cz-OP-BN** doped mCBPCNfilms. (Thickness : 30 nm, λ_{ex} : 340 nm)

Figure S11. Angle dependent p-polarized PL characteristics of 3wt% **DABNA-1** doped-mCBPCN films. (Thickness : 30 nm, λex : 340 nm)

Figure S12. Angle dependent p-polarized PL characteristics of 3wt% **Cz-OP-BN** doped-mCBPCN films. (Thickness : 30 nm, λ_{ex} : 340 nm)

Figure S13. Transient PL decays curves of 8 wt% **OP-BN** doped-mCBPCN film at 300 K and 6 K (Thickness : 100 nm, λ_{ex} : 355 nm)

Figure S14. Transient PL decays curves of 8 wt% Cz-OP-BN doped-mCBPCN films at 300 K and 6 K (Thickness : 100 nm, λ_{ex} : 355 nm)

Figure S15. Transient PL decays curves of 8 wt% 2Cz-OP-BN doped-mCBPCN films at 300 K and 6 K (Thickness : 100 nm, λ_{ex} : 355 nm)

Figure S16. UV-vis absorption spectra of neat film (Thickness : 30 nm)

Figure S17. PL spectra of neat film (Thickness : 30 nm, λ ex : 400 nm)

Figure S18. PYS plot of OP-BN

Figure S19. PYS plot of Cz-OP-BN

Figure S20. PYS plot of 2Cz-OP-BN

Rate constants were determined from the measurements of quantum yields and lifetimes of the fluorescence and TADF components according to the equations 1-4^[5].

$$k_{\rm P} \qquad k_{\rm P} = 1/\tau_{\rm P} \tag{1}$$

 $k_D \qquad k_D = 1/\tau_D \tag{2}$

$$k_{\rm ISC} \qquad k_{\rm ISC} = \Phi_{\rm D} / (\Phi_{\rm P} + \Phi_{\rm D}) \tau_{\rm P} \tag{3}$$

$$k_{\text{RISC}} \qquad k_{\text{RISC}} = (1/\tau_{\text{D}})(\Phi_{\text{P}} + \Phi_{\text{D}})/\Phi_{\text{D}} \tag{4}$$

Table S3. Photophysical properties of 8 wt% emitter doped mCBPCN films.

Compound	$\Delta E_{\rm ST}^{[a]}$	$\Phi_{\text{PL}}{}^{[b]}$	$\Phi_{P}{}^{[c]}$	$\Phi_{\text{D}}{}^{[\text{c}]}$	$\tau_{\mathrm{P}}{}^{[d]}$	$\tau_{D}^{\left[d\right]}$	$k_{P}^{[e]}$	$k_{D}{}^{\left[e\right] }$	$k_{\rm ISC}{}^{[e]}$	$k_{RISC}{}^{[e]}$
	[eV]	[%]	[%]	[%]	[ns]	[µs]	$[10^7 s^{-1}]$	$[10^3 s^{-1}]$	$[10^7 s^{-1}]$	$[10^3 s^{-1}]$
OP-BN	0.16	84.2	68.0	16.2	9.97	104	10.0	7.97	3.21	7.16
Cz-OP-BN	0.18	99.2	82.5	16.7	10.1	122	9.90	8.14	1.73	9.48
2Cz-OP-BN	0.15	100	79.2	20.8	11.4	144	8.77	6.94	2.45	9.63

[a] These values were defined as the energy difference between E_S and E_T as obtained from the onset of fluorescence and the phosphorescence spectra of the 8 wt% emitter-doped mCBPCN film, respectively.

[b] Absolute photoluminescence quantum yield.

[c] Fluorescent and TADF components determined from the total Φ_{PL} and contribution of the integrated area of each component in the transient spectra to the total integrated area.

[d] Lifetimes calculated from fluorescence decay.

[[]e] Decay rates of fluorescence (k_P), Decay rates of delayed fluorescence (k_D), intersystem crossing from S_1 to T_1 (k_{ISC}), and reverse intersystem crossing from T_1 to S_1 (k_{RISC}) were calculated from Φ_{PL} , Φ_P , Φ_D , τ_P , and τ_D .

7. NTO and SOC calculation

Figure S21. Energy levels of singlet and triplet states, SOC matrix elements, and representative NTOs of DABNA-1

Figure S22. Energy levels of singlet and triplet states, SOC matrix elements, and representative NTOs of **OP-BN**

Figure S23. Energy levels of singlet and triplet states, SOC matrix elements, and representative NTOs of Cz-OP-BN

Figure S24. Energy levels of singlet and triplet states, SOC matrix elements, and representative NTOs of 2Cz-OP-BN

8. Device perfoemance

Figure S25. Energy diagram of the devices.

Figure S26. EL spectra at 100 cd/m^2

Figure S27. External quantum efficiency-luminance characteristics

Figure S28. Current efficiency-luminance characteristics

Figure S29. Power efficiency-luminance characteristics

Figure S30. Current density-voltage-luminance characteristics

9. Spectral data

Chart S1. ¹H NMR spectrum of 1b (400 MHz, CDCl₃, RT)

Chart S2. MS spectrum of 1b

Chart S3. ¹H NMR spectrum of 1c (400 MHz, CDCl₃, RT)

Chart S4. MS spectrum of 1c

Chart S5. ¹H NMR spectrum of 2a (400 MHz, CDCl₃, RT)

Chart S6. MS spectrum of 2a

Chart S7. ¹H NMR spectrum of 2b (400 MHz, CDCl₃, RT)

Chart S8. MS spectrum of 2b

Chart S9. ¹H NMR spectrum of 2c (400 MHz, CDCl₃, RT)

Chart S10. MS spectrum of 2c

Chart S11. ¹H NMR spectrum of 3a (400 MHz, CDCl₃, RT)

Chart S12. MS spectrum of 3a

Chart S13. ¹H NMR spectrum of 3b (400 MHz, CDCl₃, RT)

Chart S14. MS spectrum of 3b

Chart S15. ¹H NMR spectrum of 3c (400 MHz, CDCl₃, RT)

Chart S17. ¹H NMR spectrum of 4a (400 MHz, CD₂Cl₂, RT)

Chart S18. MS spectrum of 4a

Chart S19. ¹H NMR spectrum of 4b (400 MHz, CD₂Cl₂, RT)

Chart S20. MS spectrum of 4b

Chart S21. ¹H NMR spectrum of 4c (400 MHz, CD₂Cl₂, RT)

Chart S22. MS spectrum of 4c

Chart S23. ¹H NMR spectrum of OP-BN (400 MHz, CD₂Cl₂, RT)

Chart S24. ¹³C NMR spectrum of OP-BN (100 MHz, CD₂Cl₂, RT)

Chart S25. ¹¹B NMR spectrum of OP-BN (190 MHz, CD₂Cl₂, RT)

Chart S26. MS spectrum of OP-BN

Chart S27. ¹H NMR spectrum of Cz-OP-BN (400 MHz, CD₂Cl₂, RT)

Chart S28. ¹³C NMR spectrum of Cz-OP-BN (100 MHz, CD₂Cl₂, RT)

Chart S29. ¹¹B NMR spectrum of Cz-OP-BN (190 MHz, CD₂Cl₂, RT)

Chart S30. MS spectrum of Cz-OP-BN

Chart S31. ¹H NMR spectrum of 2Cz-OP-BN (400 MHz, CD₂Cl₂, RT)

Chart S32. ¹³C NMR spectrum of 2Cz-OP-BN (100 MHz, CD₂Cl₂, RT)

Chart S33. ¹¹B NMR spectrum of 2Cz-OP-BN (190 MHz, CD₂Cl₂, RT)

Chart S34. MS spectrum of 2Cz-OP-BN

10. Reference

- [1] M. J. Frisch et al. Gaussian 09; Gaussian Inc.: Pittsburgh, PA 2009.
- [2] H. Ishii, D. Tsunami, T. Suenaga, N. Sato, Y. Kumura, M. Niwano, J. Surf. Sci. Jpn. 2007, 28, 264.
- [3] X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti, W. Thiel, J. Chem. Theory Comput. 2017, 13, 515.
- [4] P. K. Samanta, D. Kim, V. Coropceanu, J-L. Bredas, J. Am. Chem. Soc. 2017, 139, 4042.
- [5] F. B. Dias, T. J. Penfold, A. P. Monkman, Methods Appl. Fluoresc. 2017, 5, 012001.