Supporting information

Buffer Electrode Layers Tuned Electrical Properties, Fatigue Behavior and Phase Transition of KNN-Based Lead-Free Ferroelectric Films

Liqiang Xu,a Beibei Zhu,a Song Dai,a Kun Han,a Pingfan Chen,a Ke Wang,d Zhen Huang,a,c,* Wenbin Wu,b,c and Feng Chen,b,*

a Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
b Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
c Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
d State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
e Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China

*Corresponding authors.
E-mail addresses: huangz@ahu.edu.cn (Z. Huang) and fchen@hmfl.ac.cn (F. Chen)

These authors contributed equally to this work.
Fig. S1 (a) The XRD pattern and (b) the enlarged part around (200)$_{pc}$ peak of the KNNLT-M target.

Fig. S2 (a) The photo of real sample with Pt top electrode and (b) Pt electrode physical drawing.
Fig. S3. The elemental analysis area and corresponding EDS maps of La, Ni, K, Na, Nb, Ta, Mn and O of KNNLT-M films grown on (a, b-h) LCMO and (k, l-r) LNO buffer electrode layers. The low-magnification and high-resolution cross-sectional images across the bottom interface of KNNLT-M films grown on the (i and j) LCMO and (s and t) LNO buffer electrode layers.
Fig. S4 (a-d) The detailed room temperature P-E hysteresis loops and (e-h) corresponding switching current curves measured at 1 kHz for KNNLT-M films grown on various buffer layer-coated STO (001) substrates under different electrical field.

Fig. S5. The comparative phase transition characteristics identified by (a) temperature-dependent dielectric constant and (b) dielectric loss of KNNLT-M films grown on various buffer electrode layer-coated STO (001) substrates.