Supplementary Information

Impacts of PbI₂ on High-Efficiency Perovskite Solar Cells: Exploring Intercalation Orientations and Defects

Feifei Ren,^a Huiwen Xiang,^a Ke Zhao,^b Chengyan Liu^a*

^a Henan Key Laboratory of Photovoltaic Materials, Key Laboratory for Special Functional Materials

of Ministry of Education, Henan University, Kaifeng 475004, China

^b International Laboratory for Quantum Functional Materials of Henan, and School of Physics and

Microelectronics, Zhengzhou University, Zhengzhou 450001, China

1. The construction of PbI₂/CsPbI₃ heterojunctions

Table S1 The $PbI_2//CsPbI_3$ heterojunctions constructed by the (0 0 1) plane of PbI_2 interfaced with the various low-index planes of $CsPbI_3$, with different surface terminations at the heterointerfaces. The table includes the representations of the heterointerfaces, orientations of lattice vectors, lattice constants and lattice mismatch errors.

Heterointerface	PbI ₂		CsPbI ₃			Error (%)	
	a (Å)	b (Å)	u (Å)	v (Å)	Lattice matching (A)	a:u	b:v
PbI ₂ (0 0 1)//CsPbI ₃ (1 0 0)	$\sqrt{3}a'_0$ [1 2 0]	a ' ₀ [2 -1 0]	a ₀ [0 1 0]	a ₀ [0 0 1]	(3 <i>a</i> , 4 <i>b</i>)//(4 <i>u</i> , 3 <i>v</i>) (24.32, 18.72)//(25.53, 19.15)	4.74	2.25
PbI ₂ (0 0 1)//CsPbI ₃ (1 1 0)	$\sqrt{3}a'_0$ [1 2 0]	a ' ₀ [2 -1 0]	a ₀ [0 0 1]	$\sqrt{2}a_0$ [1 -1 0]	(3 <i>a</i> , 2 <i>b</i>)//(4 <i>u</i> , <i>v</i>) (24.32, 9.36)//(25.53, 9.03)	4.74	3.77
PbI ₂ (0 0 1)//CsPbI ₃ (1 3 0)	$\sqrt{3}a'_0$ [1 2 0]	a ' ₀ [2 -1 0]	a ₀ [0 0 1]	$\sqrt{10}a_0$ [3 -1 0]	(3 <i>a</i> , 4 <i>b</i>)//(4 <i>u</i> , <i>v</i>) (24.32, 18.72)//(25.53, 20.19)	4.74	7.28
PbI ₂ (0 0 1)//CsPbI ₃ (1 1 1)	$\sqrt{3}a'_0$ [1 2 0]	a '_0 [2 -1 0]	$\sqrt{6}a_0$ [2 -1 -1]	$\sqrt{2}a_0$ [0 1 -1]	(2 <i>a</i> , 2 <i>b</i>)//(<i>u</i> , <i>v</i>) (16.21, 9.36)//(15.64, 9.03)	3.64	3.65
PbI ₂ (0 0 1)//CsPbI ₃ (1 1 2)	$\sqrt{3}a'_0$ [1 2 0]	a ' ₀ [2 -1 0]	$\sqrt{3}a_0$ [1 1 -1]	$\sqrt{2}a_0$ [1 -1 0]	(4 <i>a</i> , 2 <i>b</i>)//(3 <i>u</i> , <i>v</i>) (32.42, 9.36)//(33.17, 9.03)	2.26	3.65

Table S2 The $PbI_2 \perp CsPbI_3$ heterojunctions constructed by the (1 2 0) plane of PbI_2 interfaced with the various low-index planes of $CsPbI_3$, with different surface terminations at the heterointerfaces. The table includes the representations of the heterointerfaces, orientations of lattice vectors, lattice constants and lattice mismatch errors.

Heterointerface	PbI ₂		CsPbI ₃		Lattice metching (Å)	Error (%)	
	a (Å)	b (Å)	u (Å)	v (Å)	Lattice matching (A)	a:u	b:v
PbI ₂ (1 2 0)⊥CsPbI ₃ (1 0 0)	a ' ₀ [2 -1 0]	c'_0 [0 0 1]	<i>a</i> ₀ [0 1 0]	a ₀ [0 0 1]	$(4a, 4b) \perp (3u, 5v)$ $(18.72, 31.58) \perp (19.15, 31.92)$	2.30	1.07
PbI ₂ (1 2 0)⊥CsPbI ₃ (1 1 0)	a ' ₀ [2 -1 0]	c ' ₀ [0 0 1]	a ₀ [0 0 1]	$\sqrt{2}a_0$ [1 -1 0]	$(4b, 2a) \bot (5u, v)$ (31.58, 9.36) \bot (31.92, 9.03)	1.07	3.65
PbI ₂ (1 2 0)⊥CsPbI ₃ (1 3 0)	a ' ₀ [2 -1 0]	c'_0 [0 0 1]	a ₀ [0 0 1]	$\sqrt{10}a_0$ [3 -1 0]	$(4a, 5b) \perp (3u, 2v)$ $(18.72, 39.48) \perp (19.15, 40.38)$	2.30	2.20
PbI ₂ (1 2 0)⊥CsPbI ₃ (1 1 1)	a ' ₀ [2 -1 0]	c'_0 [0 0 1]	$\sqrt{6}a_0$ [2 -1 -1]	$\sqrt{2}a_0$ [0 1 -1]	$(2b, 2a) \perp (u, v)$ (15.79, 9.36) \perp (15.64, 9.03)	0.96	3.65
PbI ₂ (1 2 0)⊥CsPbI ₃ (1 1 2)	a ' ₀ [2 -1 0]	c'_0 [0 0 1]	$\sqrt{3}a_0$ [1 1 -1]	$\sqrt{2}a_0$ [1 -1 0]	$(4b, 2a) \perp (3u, v)$ (31.58, 9.36) \perp (33.17, 9.03)	4.79	3.65

2. Heterojunction structures

Fig. S1 The initial heterojunctions constructed based on the intercalation orientations of PbI₂ interfaced with the (1 1 1) plane of perovskite with the various surface terminations at heterointerface. (a) PbI₂//CsPbI₃-CsI, (b) PbI₂//CsPbI₃-I, (c) PbI₂//CsPbI₃-Pb, (d) PbI₂-Pb⊥CsPbI₃-Pb, (e) PbI₂-I⊥CsPbI₃-Pb, (f) PbI₂-Pb⊥CsPbI₃-CsI, (g) PbI₂-I⊥CsPbI₃-CsI, (h) PbI₂-Pb⊥CsPbI₃-I, (i) PbI₂-I⊥CsPbI₃-I. The atoms colored by cyan, grey and purple represent Cs, Pb and I, respectively.

Fig. S2 The relaxed heterojunctions corresponding to those in Figure S1. (a) PbI₂//CsPbI₃-CsI, (b) PbI₂//CsPbI₃-I, (c) PbI₂//CsPbI₃-Pb, (d) PbI₂-Pb⊥CsPbI₃-Pb, (e) PbI₂-I⊥CsPbI₃-Pb, (f) PbI₂-Pb⊥CsPbI₃-CsI, (g) PbI₂-I⊥CsPbI₃-CsI, (h) PbI₂-Pb⊥CsPbI₃-I, (i) PbI₂-I⊥CsPbI₃-I.

3. Band alignment calculations

Fig. S3 Atomic structures of (a) $PbI_2//CsPbI_3$ -Pb and (b) PbI_2 -Pb \perp CsPbI_3-I heterojunctions with two layers of PbI_2 parallelly and vertically interfaced with the (1 1 1) plane of CsPbI_3, respectively.

The absolute deformation potential (ADP) method is used to calculate the band alignment between CsPbI₃ and PbI₂.^{S1} The average 1s core level of the iodine atoms that are far away from the interface of heterojunctions is employed as the reference level. The calculation steps are shown schematically in Fig. S4. To obtain the natural valence band offset of CsPbI₃ and PbI₂ at their respective equilibrium lattice constants, we firstly calculate the difference in energy separation between the core level and the valence band maximum (VBM) of CsPbI₃ and PbI₂ at their averaged volume.

$$\Delta E_{v, core}^{(av)} (PbI_2/CsPbI_3) = \Delta E_{v, c'}^{(av)} (CsPbI_3) - \Delta E_{v, c}^{(av)} (PbI_2)$$
(S1)

where $\Delta E_{v,c'}^{(av)}(\text{CsPbI}_3)$ and $\Delta E_{v,c}^{(av)}(\text{PbI}_2)$ represent the energy separation between the core level and VBM of CsPbI₃ and PbI₂ at their averaged volume, respectively, by performing separate bulk calculations. To align the reference levels of CsPbI₃ and PbI₂, we construct the (PbI₂)₁₆//(CsPbI₃)₁₈ and (PbI₂)₂₄ \perp (CsPbI₃)₁₄ superlattices at the average lattice constants of the interfaces. The slab thickness is carefully checked with the valence band offset convergence to less than 0.02 eV. The difference of core levels $\Delta E_{C,C'}^{(av)}$ between PbI₂ and CsPbI₃ in each half of the superlattice is derived by

$$\Delta E_{CC'}^{(av)}(PbI_2/CsPbI_3) = E_{C'}(CsPbI_3) - E_C(PbI_2)$$
(S2)

Combining with the equations (S1) and (S2), the valance band offset $\Delta E_v^{(av)}$ at their averaged lattice constants is given by

$$\Delta E_{v}^{(av)}(PbI_{2}/CsPbI_{3}) = \Delta E_{v,core}^{(av)}(PbI_{2}/CsPbI_{3}) + \Delta E_{C,C'}^{(av)}(PbI_{2}/CsPbI_{3})$$
(S3)

The volume deformation which is used to accommodate the construction of the heterojunction is accounted for the correction of the valence band. The final natural band alignment ΔE_v can be obtained by

$$\Delta E_{v} (\text{PbI}_{2}/\text{CsPbI}_{3}) = \Delta E_{v}^{(\text{av})} (\text{PbI}_{2}/\text{CsPbI}_{3}) + a_{v}^{\text{VBM}} (\text{PbI}_{2}) \text{dln}V(\text{PbI}_{2}) + a_{v}^{\text{VBM}} (\text{CsPbI}_{3}) \text{dln}V(\text{CsPbI}_{3})$$
(S4)

where a_v^{VBM} is the change in the VBM under a hydrostatic volume deformation. $d\ln V = \Delta V / V$ is the relative volume difference between the equilibrium systems of PbI₂ and CsPbI₃ and their average.

Fig. S4 The schematics for calculations of valence band offset between PbI2 and CsPbI3.

Fig. S5 Band structures of the three energetically favorable heterointerfaces. (a) PbI₂//CsPbI₃-CsI, (b) PbI₂//CsPbI₃-Pb and (c) PbI₂-Pb⊥CsPbI₃-I. The green and blue circles represent the contribution of electronic states from the atoms of the CsPbI₃ and PbI₂ systems, respectively. The size of the circles indicates the relative contribution of the corresponding atoms to the energy bands. Fermi energy level is set as the reference zero point.

Fig. S6 Band structures and atomic structures. (a)-(c) band structures of PbI₂-I⊥CsPbI₃-CsI, PbI₂-I⊥CsPbI₃-Pb and PbI₂-Pb⊥CsPbI₃-CsI, respectively, whose partial charge densities of the interface are shown in (d)-(f), respectively.

The PbI₂-I \perp CsPbI₃-CsI heterointerface exhibits several deep defect levels within the band gap, as shown in Fig. S6(a). These defect levels stem from the antibonding states of I-I at the interface depicted in Fig. S6(d). In contrast, the PbI₂ \perp CsPbI₃-Pb heterointerface displays no defect states within the band gap due to the complete saturation of I dangling bonds on the Pb-terminated (1 2 0) plane of PbI₂ at the surface termination of CsPbI₃. The PbI₂-Pb \perp CsPbI₃-CsI heterointerface produces several shallow defect levels near the conduction band minimum (CBM) as a result of unpaired electrons from the Pb atoms at the interface, as shown in Fig. S6(f).

5. Formation energies of the V_1 and I_i defects near and far away from the PbI₂-Pb \perp CsPbI₃-I heterointerface

Fig. S7 The interface formation energy of the V_1 and I_i defects near (solid lines) and far away (dashed lines) from the PbI₂-Pb \perp CsPbI₃-I heterointerface.

Fig. S8 Band structures and atomic structures of the V₁ and I_i defects far away from the PbI₂-Pb \perp CsPbI₃-I heterointerface. (a) and (b) The band structures of the PbI₂@V₁ \perp CsPbI₃-CsI and PbI₂@I_i \perp CsPbI₃-CsI heterointerfaces, respectively, whose partial charge densities of defects are shown in (c) and (d).

Fig. S9 Band structures and atomic structures of the defective PbI₂/CsPbI₃ heterointerfaces with Pb related defect at the layered PbI₂. (a) and (b) The band structures of the PbI₂@V_{Pb}//CsPbI₃-CsI and PbI₂@V_{Pb}//CsPbI₃-Pb heterointerfaces, respectively, whose atom structures are shown in (c) and (d). (e) and (f) The band structures of the PbI₂-Pb@V_{Pb1} \perp CsPbI₃-I and PbI₂-Pb@V_{Pb2} \perp CsPbI₃-I heterointerfaces, respectively, whose atom structures are shown in (g) and (h).

7. Band edge energetics and carrier transport

Fig. S10 Schematic diagrams of band edge energetics illustrating the impacts of intercalating orientation of PbI₂ on the carrier transfer of PSC. The band edge positions of TiO₂ (electron transfer layer) and Spiro-OMeTAD (denoted as Spiro, hole transfer layer) relative to those of perovskite are collected from Ref. S2. (a), (b) and (c) show the band alignments of heterojunctions formed by a layered PbI₂ parallelly intercalated into two perovskite grains, between TiO₂ and perovskite, and between perovskite and Spiro, respectively. (d), (e) and (f) show the cases of PbI₂ vertically intercalated into them. The band alignments between perovskite and PbI₂ are shown in Fig. 2 of the main text.

By analyzing the band edge energetics of TiO₂ (electron transfer layer) and Spiro-OMeTAD (denoted as Spiro, hole transfer layer) relative to that of perovskite,^{S2} the impacts of the intercalating PbI₂ on carrier transfer in PSC devices are studied. The parallel intercalation of the layered PbI₂ in perovskite grains (perovskite//PbI₂//perovskite) does not subsequently hinder the transfer of the photoexcited electrons and holes in the absorber, due to the slightly higher CBM and lower VBM of PbI₂ than those of perovskite, as shown in Fig. S10(a). To maximize the passivating effect and minimize the hindrance of carrier transfer, PbI₂ should be processed into multiple thin layers, which can be achieved by the post-treatment with the organic ammonium salts.^{S3} On the other hand, the parallel intercalation of PbI₂ into the electron transfer interface (TiO₂//PbI₂//perovskite) and the hole transfer interface (perovskite//PbI₂//Spiro) can suppress the interfacial nonradiative recombination as shown in Fig. S10(b) and S10(c). Despite the parallel intercalation of PbI₂, the extraction of carriers is not significantly impeded, as the built-in electric fields at the contact interfaces can derive carriers across the low energy barrier of the thin-layered PbI₂.

The vertical intercalation of the layered PbI_2 into perovskite (perovskite $\perp PbI_2 \perp$ perovskite) exhibits a pronounced type-II band alignment as shown in Fig. S10(d). Consequently, both the high barrier height and the great layer thickness impede carrier transfer through the perovskite grains. The PbI₂ at the electron transfer contact interface (TiO₂ \perp PbI₂ \perp perovskite) seriously hinders electron extraction due to its high CBM as shown in Fig. S10(e). Furthermore, electrons accumulated at the CBM of perovskite can readily recombine with holes at the high VBM of PbI₂. At the hole transfer interface (perovskite \perp PbI₂ \perp Spiro), PbI₂ efficiently extracts holes from the absorber but obstructs hole transfer to electrode due to its high VBM, as shown in Fig. S10(f). Therefore, despite its passivation benefits, the vertical intercalation of the layered PbI₂ into PSCs is not a favorable scheme, given the pronounced type-II band alignment and the great layer thickness.

References

S1. Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong and S. Wei, *Appl. Phys. Lett.*, 2009, **94**, 212109.

S2. S. Akin, Y. Altintas, E. Mutlugun, S. Sonmezoglu, *Nano Energy* 2019, 60, 557-566.
S3. X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo and C. Li, *Angew. Chem. Int. Ed.* 2022, 61, e202115663.