Electronic supplementary information

Design of Cr-Ba-doped γ-Ga₂O₃ Persistent Luminescence Nanoparticles for Ratiometric Temperature Sensing and Encryption Information Transfer

Tianqi Zhao^{a, b}, Renagul Abdurahman^{b,*}, Qianting Yang^b, Ruxiangul Aiwaili^b, Xue-Bo Yin^{a, *}

a. Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China.

*E-mail: xbyin@nankai.edu.cn, xbyin@sues.edu.cn

b. Key Laboratory of Xinjiang Novel Functional Materials Chemistry; Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi Xinjiang, 844000 China.

*E-mail: renagul111@aliyun.com

Samples	V_{Ga}/mL	$V_{Ethylene \; glycol} / \; mL$	V _{Cr} / mL	V_{Ba}/mL
1	4	2	0	0
2	4	2	0.05	0
3	4	2	0.10	0
4	4	2	0.15	0
5	4	2	0.20	0
6	4	2	0.25	0
7	4	2	0.30	0
8	4	2	0.25	0
9	4	2	0.25	0.08
10	4	2	0.25	0.12
11	4	2	0.25	0.16

Table S1 Solution volume compositions of different samples

Note: $C_{Ga}=0.5 \text{ mol} \cdot L^{-1}$; $C_{Cr}=0.01 \text{ mol} \cdot L^{-1}$; $C_{Ba}=0.01 \text{ mol} \cdot L^{-1}$; $n_{Ga2O3}: n_{Cr}: n_{Ba}=1:x:y$

Samples	γGCB
Space group	Fd3m
2θ-interval (°)	10-80
<i>a</i> (Å)	8.224
<i>b</i> (Å)	8.224
<i>c</i> (Å)	8.224
Alpha	90.00
Beta	90.00
Gamma	90.00
Crystal density (g/cm ³)	5.97
$V(Å^3)$	556.15
R_{wp} (%)	7.21
R_p (%)	5.72
χ^2	1.88
GOF	1.37

Table S2 The result of γ GCB XRD refinement

Parameters	γ-Ga ₂ O ₃ : 0.0025Cr	γGCB
$ au_1/s$	3.084	4.661
A_{I}	1.608	1.400
$ au_2/\mathrm{s}$	44.471	62.014
A_2	1.005	0.888
$ au_3/s$	421.608	509.628
A_3	1.145	1.185
$ au_{av}/{ m s}$	141.670	191.560
R^2	0.996	0.997

Table S3 Fitting parameters of $\gamma\text{-}Ga_2O_3\text{:}$ 0.0025Cr and γGCB decay curve

 Table S4 Comparison of LIR-based materials for temperature sensing

Material composition	Temperature range/ K	$S_a(\% \mathrm{K}^{-1})$	$S_r(\% K^{-1})$	Reference
NaYF ₄ : Er ³⁺	303-423	-	1.06 (303K)	1
$Na_5Y_9F_{32}$: Ce^{3+} , Tb^{3+}	298-473	1.57	1.18 (473K)	2
Ba ₂ LaTaO ₆ : Bi ³⁺ , Mn ⁴⁺	80-473	2.91 (350K)	3.81 (350K)	3
$Sr_2Y_8(SiO_4)_6O_2$: Ce ³⁺ , Tb ³⁺	298-498	-	0.74 (298K)	4
SrLu ₂ O ₄ : Bi ³⁺ ,Eu ³⁺	315-543	1.1 (543K)	0.87 (315K)	5
γ -Ga ₂ O ₃ : Cr ³⁺ , Ba ²⁺	300-420	3.4	1.5 (300K)	This work

Figure S1 The XRD pattern of a) γ -Ga₂O₃: xCr and b) γ -Ga₂O₃: 0.0025Cr, yBa. c) The XRD refined pattern of γ -Ga₂O₃ using GSAS software. d) Particle size distribution and TEM pattern (insert) of γ -Ga₂O₃: 0.0025Cr. e) EDS spectrogram pattern of γ GCB.

Figure S2 a) Excitation spectrum of γ -Ga₂O₃ with the emission at 508 nm and emission spectrum of γ -Ga₂O₃ under 278 nm excitation. b) Luminescence intensity histogram at 508 nm and 700 nm of γ GCB at temperature from 300 to 570 K. c) Luminescence intensity histogram at 508 nm of γ GCB at temperature from 300 to 420 K. d) Linear between relative emission intensity and the temperature from 300 to 570 K.

Figure S3 Relative sensitivity of γ GCB in the temperature range 300-420K.

Figure S4 The photographs of γ GCB and γ -Ga₂O₃ powder taken under a) and b) sunlight as well as c) and d) under 254 nm UV lamps.

Figure S5 The differentiation of a) umbrella pattern and b) barcode with the different color from γ GCB and γ -G₂O₃ under the excitation with sunlight and 254 nm 1, 2, and 3 represent the designed pattern, and that under sunlight and 254 nm UV lamp, respectively.

References

- Z. Wu, L. Li, X. Lv, H. Suo, C. Cai, P. Lv, M. Ma, X. Shi, Y. Yang, L. Marciniak and J. Qiu, *Chem. Eng. J.*, 2022, **438**, 135573.
- F. Xu, B. Zheng, H. Xia, J. Wang, H. Song and B. Chen, *J. Alloys Compd.*, 2021, 873, 159790.
- X. Zhu, L. Wang, Q. Shi, H. Guo, J. Qiao, C. e. Cui, K. V. Ivanovskikh and P. Huang, J. *Lumin.*, 2023, 262, 119949.
- W. Chun-Hao, J. Hao, Y. Zi-Han, W. Qing-Yang and L. Fa-Chun, *J. Alloys Compd.*, 2022, **928**, 167239.
- 5. X. Chen, Z. Zheng, L. Teng, R. Wei, F. Hu and H. Guo, *RSC Adv.*, 2018, **8**, 35422-35428.