Supplementary Information

Lead-free halide perovskites for high-performance thin-film

flexible supercapacitor application

Ankur Yadav[†], Ankush Saini[†], Praveen Kumar[‡] and Monojit Bag^{†, ‡, *}

† Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute

of Technology Roorkee, Roorkee 247667, India

‡ Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India

Corresponding authors: (Monojit Bag) monojit.bag@ph.iitr.ac.in,

Figure S1: FeSEM Image of synthesized powder a) MAPbCl₃ b) CsPbCl₃ c) Cs₃Bi₂Cl₉

Figure S2: Thermogravimetric Analysis (TGA) curve of a) MAPbCl₃ b) CsPbCl₃ c) Cs₃Bi₂Cl₉

Figure S3: Full scan XPS spectra a) Cs₃Bi₂Cl₉ synthesized powder b) Cs₃Bi₂Cl₉ as prepared electrode

Figure S4: Galvanometric Charge Discharge (current density range- 0.2 A/g to 0.7 A/g) and Cyclic Voltammetry curve (scan rate range- 5 mV/s to 140 mV/s) in three electrode system for a,d) MAPbCl₃ b,e) CsPbCl₃ c,f) Cs₃Bi₂Cl₉ electrodes

Calculation

The **specific capacitance**, **energy density and power density** can be calculated from the GCD curved by the following relations:

Specific Capacitance, Cs (F/g) = I
$$\int V \cdot dt / mV^2$$
 S1
Energy Density (Wh/kg), E = Cs(ΔV)²/7.2 S2
Power Density (W/kg), P = $E \times 3600/t$ S3

Here, I is the current (A), V is the potential window (Volt), m is mass of active material (g), and t is the discharging time.

In case of CV following relation can be used to calculate the specific capacitance:

$$Cs(F/g) = A''/m^* s^* \Delta V$$
 S4

Where A" is the area under CV curve, s is the scan rate(mV/s) and ΔV is the voltage window.

In case of two electrode system, the areal capacitance (mF/cm^2) areal energy density (Wh/cm^2) and power density (W/cm^2) can be calculated from following relations:

Areal Capacitance,
$$C_A (mF/cm^2) = I \int V \cdot dt / A. V^2$$
 S5

Areal Energy density,
$$E_A$$
 (Wh/cm²) = $C_A (\Delta V)^2 / 7200$ S6

Areal Power density,
$$P_A (W/cm2) = E_A /t$$
 S7

Where A is active electrode area and t is discharging time in hours

Figure S5: Graph between log peak current v/s log scan rate for b value and variation of b value with applied bias a, d) MAPbCl₃ b,e) CsPbCl₃ c,f) Cs₃Bi₂Cl₉ (CV scan rate range- 5mV/s to 100 mV/s)

Figure S6: a) Tangent loss plots b) Variation of Ionic mobility with voltage c) Ionic conductivity variation with frequency (Frequency range- 100 mHz to 100 kHz)

Fig. S7: Ex situ XRD of a) MAPbCl₃ b) CsPbCl₃

Fig. S8: Power density variation of various perovskite-based supercapacitor devices

Figure S9: Galvanometric Charge Discharge curve (current density range- 0.25 A/g to 0.75 A/g) and CV curve (scan rate range- 5 mV/s to 200 mV/s) a, d) MAPbCl₃ b, e) CsPbCl₃ c,f) Cs₃Bi₂Cl₉

Figure S10: a) Bode magnitude b) Bode phase plot of various supercapacitor devices

Model	Linear
Equation	$\mathbf{y} = \mathbf{a} + \mathbf{b} \mathbf{x}$
Weight	No weighing
Intercept	99.64143±0.40
Slope	-0.03948± 0.004
Residual Sum of Square	1.422257
Pearson's r	-0.97895
R-Square (COD)	0.95834
Adj. R-Square	0.94793

 Table S1: Fitting Parameters (linear fitting) for bending angles (Linear stage)

 Table S2: Fitting Parameters (exponential fit) for bending cycles (Linear Stage)

Model	Exponential
Equation	$\mathbf{y} = \mathbf{y}0 + \mathbf{A}1^* \mathbf{exp}(\mathbf{R}0^*\mathbf{x})$
y0	89.58732 ± 0.56123
Α	10.2067 ± 0.77066
R0	-0.03267 ± 0.00662
Reduced Chi-Sqr	0.47955
R-Square (COD)	0.98321
Adj. R-Square	0.97201

Model	Linear
Equation	$\mathbf{y} = \mathbf{a} + \mathbf{b}^* \mathbf{x}$
Weight	No weighing
Intercept	100.58±0.60465
Slope	-0.11067± 0.008
Residual Sum of Square	1.828
Pearson's r	-0.99181
R-Square (COD)	0.98369
Adj. R-Square	0.97825

 Table S3: Fitting Parameters (linear fitting) for twisting angles (Angular Stage)

 Table S4: Fitting Parameters (exponential fit) for twisting cycles (Angular stage)

Model	Exponential
Equation	$\mathbf{y} = \mathbf{y}0 + \mathbf{A}1^*\mathbf{exp}(\mathbf{R}0^*\mathbf{x})$
y0	82.10863 ± 1.84842
Α	16.80643 ± 1.75487
R0	-0.01311 ± 0.00369
Reduced Chi-Sqr	1.15311
R-Square (COD)	0.98173
Adj. R-Square	0.96954

Figure S11: Linear Stage with substrate holder for bending angle and bending cycle

measurements

Figure S12: Angular Stage for twisting angle and twisting cycle measurements