1	The impact of hydrogen peroxide production in OECTs for <i>in vitro</i>					
2	applications					
3						
4	Claudia Lubrano ^{1,2,3¥} , Ottavia Bettucci ^{3\mp¥} , Gerwin Dijk ⁴ , Alberto Salleo ⁴ , Alexander					
5	Giovannitti ^{$\pm 4^*$} , Francesca Santoro ^{*1,2,3}					
6						
7	¹ Institute of Biological Information Processing – Bioelectronics, IBI-3, Forschungszentrum					
8	Juelich, 52428, Germany.					
9	² Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany.					
10	³ Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy.					
11	⁴ Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.					
12						
13						
14	[¬] Current address: Department of Materials Science and Milano-Bicocca Solar Energy Research					
15	Center – MIB-Solar, University of Milano-Bicocca, 20125 Milano, Italy					
16						
17	±Current address: Department of Chemistry and Chemical Engineering, Chalmers University of					
18	Technology, Göteborg 412 96, Sweden					
19						
20	[¥] equal contribution					
21	*correspondence to: francesca.santoro@iit.it, alexander.giovannitti@chalmers.se					
22						
23						
24						
25						
26	Supplementary information					

1 Figure S1. Transfer curves of PEDOT:PSS and p(gPyDPP-MeOT2) OECTs 2

6 Figure S2. H₂O₂ calibration curve.

7 a) Colorimetric Standard Curve obtained by mixing the proper amount of H_2O_2 Substrate with the 8 Assay Buffer and the Fluorescent Peroxidase Substrate. The Reaction Mix has been incubated at 9 room temperature for 5 minutes before measuring the absorbance at 570 nm. Different buffer 10 solutions containing concentrations of H_2O_2 ranging from 1 μ M to 100 μ M have been tested. b) 11 UV-vis spectra of the Reaction Mix solution at different H_2O_2 concentrations. The standard curve 12 has been obtained following the procedure reported in the Peroxidase Activity Assay Kit (Merck 13 Life Science S.r.l., Italy). The absorbance values was measured spectrophotometrically using

14 Dynatech MR580 Microelisa reader.

H ₂ O ₂ Conc (μM)	0	1	5	10	30	50	80	100
Abs at 570 nm	0,045	0,045	0,048	0,052	0,079	0,132	0,199	0,342

1 2

8

3 Figure S3. Correlation gate charges with H_2O_2 production. Schematic graph displaying gate current measured during the application of gate voltage pulses: the light blue line corresponds to 4 the current measured during the ON phase of the pulse (charge current), while the orange line is 5 the current measured during the OFF phase of the pulse (discharge current). The number of charges 6 7 injected from the gate towards the polymeric channel was obtained by the integration of the charge current.

22

Large channel Small channel

23

Figure S4. Test of H₂O₂ produced by the transistor operation on the HT22 cell line. 24

a) 60.000 cells/cm² of HT22 have been plated on a 24-well plate. After 24 hours, the cell medium 25

was replaced with a cell media containing a 20 µM solution of H₂O₂ (the same amount produced 26

27 by the small channel area-transistor and short pulse duration experiment). Different time points

have been tested (15', 30', and 60') to evaluate the effect of the H₂O₂ produced by the transistor 28 29

operation on HT22 cells (i). The H₂O₂-rich medium was then replaced with a fresh medium and

30 then the MTT assay test was carried out to evaluate the metabolic activity of cells (ii). b) 60.000

cells/cm² of HT22 have been plated on a 24-well plate. After 24h the cell medium was replaced 31

with a cell media containing a 100 µM solution of H₂O₂ (the same amount produced by the large 32

1 channel area-transistor long pulse duration) to evaluate the effect of the H_2O_2 produced by the 2 transistor operation on HT22 cells. (i). The H_2O_2 -rich medium was then replaced with a fresh 3 medium and then the MTT assay test was carried out to evaluate the metabolic activity of cells 4 (ii).

5

20 μM conc H ₂ O ₂	Abs at 570 nm	100 μM conc H ₂ O ₂	Abs at 570 nm
15'	0,203 (+-0,037)	15'	0,075 (+-0,008)
30'	0,194 (+-0,014)	30'	0,072 (+-0,007)
1h	0,138 (+-0,007)	1h	0,076 (+-0,005)

9

6 7 8

10 Figure S5. Effect of H₂O₂ produced by OECT operation on HT22 directly seeded on the

11 device channel area. HT22 (60.000 cell/cm²) have been seeded on PEDOT:PSS channel area and

12 a 5 minutes square voltage pulse of 0.7 V has been applied at the gate electrode. No significant

13 difference was found in the amount of H_2O_2 produced before and after cell plating in both devices 14 (a-i and b-i).

15 The MTT assay carried out after 1h of incubation, indicated a drastic decrease in the metabolic

16 activity of the HT22 compared with a PEDOT:PSS sample control (a-iv, b-iv). Such result was

17 confirmed by the brightfield images of the HT22 cells, which exhibited stretched shape at t=0 (a-

1 ii, b-ii) and round-shaped morphology and cells cluster formation after 1h of exposure at H_2O_2 (a-

2 iii, b-iii).

6 Peroxide assay

Device K2	Abs at 570 nm	Device K3	Abs at 570 nm	
w/ cells	0,113	w/ cells	0,100	
w/o cells	0,122	w/o cells	0,95	

8 MTT assay

	Device K2	Device K3
t=1h	0,138	0,185
t=1h control	0,346	0,318