A supramolecular liquid crystal/photonic crystal composite film with broad diffraction-wavelength shifts/fast response to pH changes

Runzi Lu^{†a}, Changjing Cheng^{†a,b}, Li Wang^a, Huiyao Zhang^a, Hongju Zeng^{a,c}, Yanlin Wang^a, Jingya Wen^a, Xingbin Lv^{a,b}, Hairong Yu^{a,b} and Ting Liang^{*a,b}

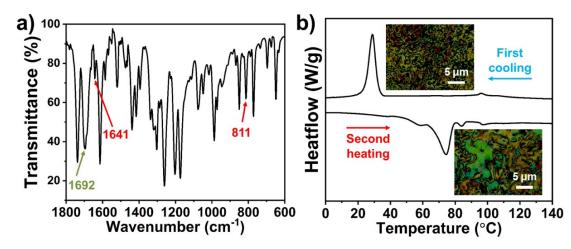
a. College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan

610200, PR China.

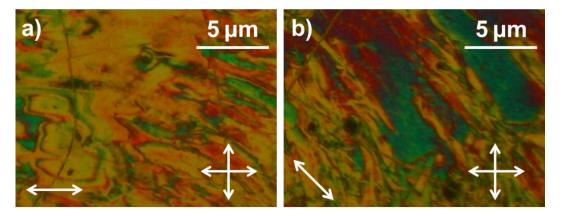
b. Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for

Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Chengdu, Sichuan 610200,

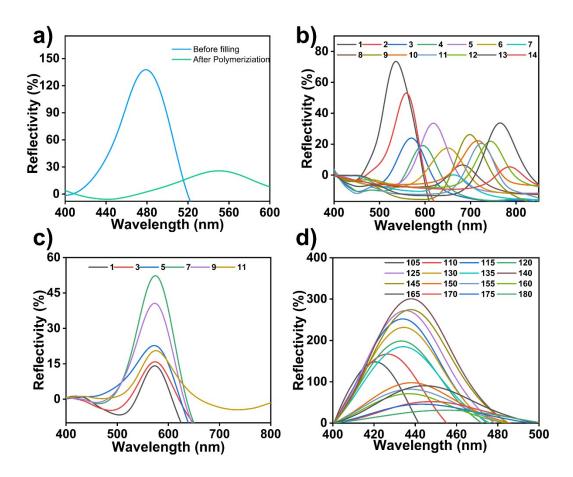
PR China.

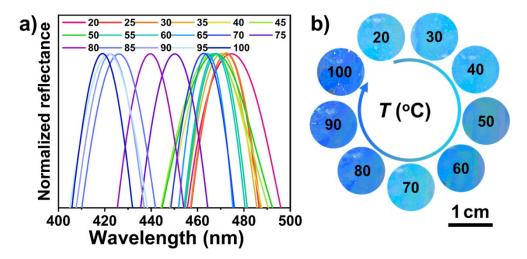

c. Chengdu BOE Display Sci-tech Co. Ltd., Chengdu, Sichuan 610200, PR China.

Email: liangting@swun.edu.cn


[†]Those authors contributed equally to this work.

Materials	$\Delta\lambda_{max}$ (nm)	Response time	Stability (Cycles)	Application	Ref.
Azobenzene-containing CLCPs	-	-	5 cycles	Photo/thermal dual- response	[1]
SiO ₂ opal PC/LCE	16 nm	-	6 cycles	Thermal response	[2]
SiO ₂ inverse opal PC/LCE	50 nm	-	5 cycles	Thermal response	[3]
Janus azobenzene inverse opal actuator	-	-	-	Photo-, solvent-, and thermal-response	[4]
SiO ₂ inverse opal PC/LCE	28 nm	-	-	Thermal response	[5]
Azobenzene inverse opals	60 nm	2 s	Repeated more than 100 times	Inkless rewritable paper	[6]
Cholesteric LC network- based PCs	163 nm	Within 5 s	5 cycles	Humidity and SO ₂ gas response	[7]
LC-based inverse opal film	16 nm	-	10 cycles	Thermo-, photo-, and mechano-responsive	[8]
Chiral hydrogen-bonded self-assembled complexes	190 nm	70 s	5 cycles	Thermal switching reflective color film	[9]
SLC/PC film	250	< 0.5 s	> 50 cycles	PH/thermal response	This work


 Table S1 LC-based PC materials developed in the recent decades.


Fig. S1 (a) FT-IR spectrum of the monomer mixture. (b) DSC spectra and POM pictures (*insets*) of the monomer mixture at different temperatures during the first cooling and second heating processes.

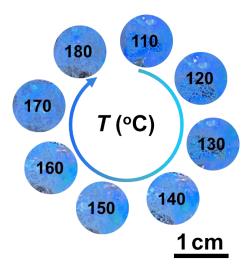

Fig. S2 POM images of the SLC/PC opal composite film. The single arrow shows the alignment direction. The axes of the crossed polarizers are represented by the crossed arrows.

Fig. S3 (a) Reflection spectra of the samples before filling with SLC monomer (*Blue*) and after UVinduced polymerization (*Green*). The diffraction wavelength shifts of the SLC/PC inverse opal composite film (b) as a function of pH value, (c) with no alignment at various pH values, (d) as a function of temperatures of 100–180 °C. (Not normalized)

Fig. S4 Reflection spectra (a) and structural colors (b) of the SLC/PC inverse opal film as a function of temperatures from 20 to 100 °C.

Fig. S5 Structural color changes of the inverse opal composite film as a function of temperatures ranging from 110 to 180 °C.

References

- [1] J. Zhao, Y. Liu, Y. Yu, Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene, *J. Mater. Chem. C*, 2014, **2**, 10262–10267.
- [2] H. Xing, J. Li, Y. Shi, J. Guo, J. Wei, Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer, *ACS Appl. Mater. Interfaces*, 2016, 8, 9440–9445.
- [3] H. Xing, J. Li, J. Guo, J. Wei, Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer, *J. Mater. Chem. C*, 2015, 3, 4424–4430.
- [4] J. Liu, J. Wang, T. Ikeda, L. Jiang, Liquid-Phase super photoactuator through the synergetic effects of a Janus structure and solvent/thermal/photo responses, *Adv. Funct. Mater.*, 2021, **31**, 2105728–2105739.
- [5] G. Wu, Y. Jiang, D. Xu, H. Tang, X. Liang, G. Li, Thermoresponsive inverse opal films

fabricated with liquid-crystal elastomers and nematic liquid crystals, *Langmuir*, 2011, **27**, 1505–1509.

- [6] J. Liu, Y. Wang, J. Wang, G. Zhou, T. Ikeda, L. Jiang, Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch, ACS Appl. Mater. Interfaces, 2021, 13, 12383–12392.
- [7] C. Shen, Z. Wang, R. Huang, J. Bao, Z. Li, L. Zhang, R. Lan, H. Yang, Humidityresponsive photonic crystals with pH and SO₂ gas detection ability based on cholesteric liquid crystalline networks, ACS Appl. *Mater. Interfaces*, 2022, 14, 16764–16771.
- [8] N. Akamatsu, K. Hisano, R. Tatsumi, M. Aizawa, C.J. Barrett, A. Shishido, Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals, *Soft Matter.*, 2017, 13, 7486–7491.
- [9] F. Chen, J. Guo, Z. Qu, J. Wei, Novel photo-polymerizable chiral hydrogen-bonded selfassembled complexes: Preparation, characterization and the utilization as a thermal switching reflective color film, *J. Mater. Chem.*, 2011, 21, 8574–8582.