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Supplementary Section 1: Neural Network Training 

 
Figure S1 Loss Function for 10 Layers: Training performance of the neural network via 
observation of the loss function versus number of batch (or iterations). Lower values indicate better 
performance.  

As discussed in the main manuscript, we employed a residual generative nerual network that was 
made up residual neural network blocks. We employed a relatively deep and wide neural network 
architecture by using 12 of the neural network blocks. Each neural network block had the following 
layers: input layer (512 neurons), fully connected layer (1024 neurons), batchnormalization, leaky 
ReLU (hyperparameter of 0.2), fully connected layer (1024 neurons), fully connected layer (512), 
and a resiudal layer with a leaky ReLU (hyperparameter of 0.2). Despite the large number of layers, 
the neural network converges in a reasonable number of iterations. As shown in Figure S6, the loss 
function reaches a horizontal plateau near 40 iterations. Each iteration used a batch size of 10, 
where the loss and gradients of 10 thin films stacks are averaged for backpropgation for mini batch 
gradient descent. 
 

 



Supplementary Section 2: Optical Properties of Thin Film Stack. 

 
The dielectric function of the indium tin oxide layer εITO can be described by the Drude model: 
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The neural network designed 10-layer stack was optimized by changing the carrier densities in the 
Drude model and varying the thicknesses, which is shown in Table S1. All other parameters, such 
as effective mass, electron collision rate and epsilon infinity, in the Drude model were kept 
constant and are shown in Table S2. The refractive index and extinction coefficients as well as the 
real and imaginary parts of complex permittivity for the entire thin film stack is shown in Figure 
S1 and S2, respectively. 

Table S1: Electron Density, Thickness, and Plasma Frequency of ITO Layers for Neural 
Network Designed Thin Film Stack 

 

Table S2: Fixed Drude Model Parameters for ITO Layers 

 

 

 

 

 

Constant Drude Model Parameters  
Permittivity at high-frequency limit, ε∞ 3.9 
Mobility μ (cm2·V-1·s-1) 14  

Effective Mass  0.28 x me 
 

Collision rate, Г (rad·s-1) 0.449 x 1015 



Table S3: Subwavelength Thicknesses 

 
To ensure that the subwavelength thickness was not artificially decreased by the carrier density 
range initially chosen, we extended the maximum wavelength range from 2000 nm to 3000 nm 
and changed the carrier density from 11020 cm-3

 to 201020 cm-3 in 11019 cm-3 steps. We then 
trained on 1000 12-layer devices and generated 10000 12-layer stacks. By averaging the 
subwavelength thicknesses of the top 100 broadband devices, we found that the average 
subwavelength thicknesses of our 12-layer stack is 16.03 which is more or less the same as the 
subwavelength thicknesses reported in Table S3 despite extending the range of parameters.  

 

 

 



 

Figure S2: Refractive Index and Extinction Coefficient n (a) and k (b) values for all 10 layers 
of the neural network designed absorber. ITO 1 and ITO 8 as well as ITO 1 and ITO 5 have the 
same optical properties, respectively.  

 
Figure S3: Real (a) and imaginary (b) part of the electric permittivity for all 10 layers of the neural 
network designed absorber.  
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Figure S4: ENZ Wavelength Profile. (a) Corresponding ENZ wavelengths for each layer of the 
neural network designed 10-layer stack.(b) Simulation of the absorption spectrum for the neural 
network designed 10-layer stack at multiple angles. 

In Figure S4a, we plot the the ENZ wavelengths of the stack (see the Table S1) as well as the 
absorption profile of our thin film. The position of the ENZ wavelengths suggest intelligent design 
by the neural network- the neural network has learned how to arrange the ENZ wavelengths in 
such a manner to achieve broadband perfect absorption. The absorption spectra of Figure S4b 
shows that our neural network designed broadband absorber is slightly broad in angle, with  
bandwidth of approximatively 8 degrees. 
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Figure S5: Permutation of all ordered layers vs Neural Network. (a) Histogram displaying the 
bandwidth of thin film stacks generated by performing a permutation of all the layers of the best 
performing neural network designed 10-layer thin film. (b) Comparison of the absorption spectra 
of neural network design verse the best permutation (519.8 nm for neural network compared to 
588 nm for permutation).  

To gauge how effective our neural network is at choosing the most optimal order layer, we 
performed a physics simulation for all permutations of the ITO layers for our 10-layer film. The 
order of the ITO layers was shuffled around. As shown by Figure S5a and Figure S5b, the total 
number of permutations equaled 40,320 or 8!, achieving a median bandwidth of 455 nm and a 
maximum bandwidth of 588 nm. Although our original neural network design did not have the 
best possible order of materials, it was able to find a near optimal order of layers. Overall, this is 
still an impressive feat by the neural network considering during generation we only sampled 1000 
films. In other words, if we consider the total design spaced consisted of billions of combinations 
of thicknesses as well as carrier densities- the neural network achieved 13% less bandwidth than 
the most optimal permutation while only sampling an extremely tiny fraction of the design space. 
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Figure S6: Comparison of Broadband Absorbers in Literature verse Solar Spectrum: 
Absorption spectra of different ITO broadband absorbers under 150 nm thickness reported in 
literature1, 2. The broadband absorber reaches into the near infrared- a region of solar energy 
usually wasted by conventional silicon based solar cells3. 

The large perfect absorption bandwidth in the near infrared opens the possibilities for more 
efficient solar cells. Conventional silicon based solar cells typically absorb light in a region from 
approximately 300 to 1100 nm4, and as a result, the solar energy beyond 1100 nm is often wasted 
or inaccessible. Our ENZ thin film stack as aforementioned performs optimally in the region 
above 1100 nm (Figure S6), and hence could potentially be integrated into a photovoltaic cell to 
capture a wider range of the solar spectrum5, 6.  



Supplementary Section 3: Technical Performance of TMM Fast 

The following information is a performance review of the TMM Fast7 - an extremely fast 
implementation of the Abeles transfer matrix method for thin film stacks, originally written in 
python by Steven J Byrnes. This implementation was developed by Alexander Luce in 
collaboration with Heribert Wankerl at Osram.  

TMM Fast comes in two variations that were examined in this work: CPU only and GPU 
acceleration. We examined the algorithms performance by calculating the transmission spectra 
with 1000, 10-layer thin film stack and constant n and k values of 1 and 0 respectively from 0 to 
60 degrees in 5-degree steps and from wavelengths of 400 nm to 2000 nm with 4 nm steps. The 
program was run on a 12th generation Intel Core i5-12600K with a RTX 3090 GPU and the 
computation time was calculated with the “timeit” magic function; timeit measures the 
computation time of an algorithm by repeating the algorithm seven times and then averaging as 
well as finding the standard deviation of the recorded time to complete.  With CPU only, our 
algorithm ran in 7.27 s ± 55.6 ms per loop, while the GPU variant ran significantly faster with 631 
ms ± 1.57 ms per loop. As a result, GPU acceleration is an order of magnitude faster than 
performing the calculations on a CPU. 
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