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Structural Properties

Fig. S1 (a) and S1 (b) present the Grazing Incidence X-ray Diffraction (GIXRD) patterns for the 

thin films of LiInSnO4 and ZnO, respectively. These patterns were analyzed to determine the 

crystalline or amorphous phases of the films. The thin films were prepared on cleaned heavily 

doped p+-Si substrates using the same method and conditions employed for Thin-Film Transistor 

(TFT) fabrication. The GIXRD pattern of the annealed LiInSnO4 thin film at 550 °C shows an 

absence of sharp peaks, indicating that it is in an amorphous phase. On the other hand, the GIXRD 

patterns of the ZnO thin film display intense peaks corresponding to crystal planes (100), (002), 

(101), (110), (103), and (112) at their respective 2θ values. These peaks have been matched with 

the JCPDS number (JCPDS-89-0510), confirming the hexagonal wurtzite structure of the ZnO thin 

film [1]. This hexagonal wurtzite structure of ZnO possesses good carrier transport properties, 

making it suitable as an active layer in the TFT. Based on these findings, it can be concluded that 

the dielectric thin film of LiInSnO4 in the TFT is in an amorphous phase. In contrast, the ZnO thin 

film exhibits a polycrystalline hexagonal wurtzite structure, indicating its potential for use as an 

effective active layer in the TFT[2].
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Fig.S 1 XRD pattern of a) LiInSnO4 and b) ZnO thin film

Surface Morphology

Atomic force microscopy (AFM) measurements were utilized to investigate the surface 

morphology of a gate dielectric thin film made of LiInSnO4. Fig. S2 (a) and Fig. S2 (b) depict 2-

D and 3-D micrographs of the thin film, respectively. The root mean square (RMS) surface 

roughness of the LiInSnO4 layer film was determined to be 0.54 nm. This analysis reveals that the 

dielectric surface exhibits extremely low roughness, indicating the suitability of LiInSnO4 for 

producing high-performance TFTs [3]. This is also attributed to its amorphous nature and 

improved adhesion with the p+-Si substrate. 
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Fig.S 2 AFM image of LiInSnO4 dielectric thin film (p+-Si/LiInSnO4) (a) 2-D b) 3-D with Rrms~ 
0.54 nm

Optical Properties

The optical properties of a thin film of LiInSnO4 gate dielectric were analyzed using a UV-Vis 

spectrophotometer, and the corresponding results are presented in Fig. S3. The fabrication process 

for depositing the LiInSnO4 thin film on a quartz substrate followed the same procedures as those 

used for manufacturing MIM and TFT devices. Fig. S3 (a) illustrates that the average transmittance 

of the LiInSnO4 dielectric thin film is above 85% in the visible range of the electromagnetic spectra 

(400-800 nm), which is expected for materials with a wide band gap. The high transparency 

observed in this range suggests minimal scattering from the thin film, indicating a low level of 

impurities, defects, voids, or roughness on the film surface. This low scattering leads to a reduced 

leakage current, which is crucial for achieving high-performance gate dielectrics in TFTs. To 

determine the band gap of the LiInSnO4 material, a Tauc's plot was generated by plotting (αhν)1/2 

energy versus (hν), as depicted in Fig. S3(b). The absorption coefficient (α) was calculated from 

the absorbance data, and the band gap was obtained by tangential extrapolation of the curve toward 

the energy axis (hν). The extracted band gap value for LiInSnO4 from this Tauc's plot is 5.2 eV, 

which is reasonably high and makes it suitable for applications as a gate dielectric in TFTs. 

Additionally, UV-Vis spectroscopic measurements were performed for a ZnO thin film prepared 



on a quartz substrate (Fig.S11(a)). The absorbance peak of the ZnO thin film was observed at 360 

nm (Fig. S11 (a)). The band gap of ZnO, extracted from Tauc's plot (inset of Fig. S1 (a)), was 

found to be 3.2 eV. This result indicates that the ZnO thin film can serve as both a semiconductor 

and an optically sensitive material in TFTs.
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Fig.S 3 (a) Optical transmittance spectra of solution proceeds LiInSnO4dielectric thin film 
annealed at 550°C for Quartz/LiInSnO4 (inset) (b) Tauc’s plot of LiInSnO4 and band gap is of 5.2 
eV

Electrical Characterization of Dielectric Thin Film 

To resolute, the electrical properties of spin coated (solution-processed) LiInSnO4 thin films, 

device has been fabricated with a device architecture of metal-insulator-metal (MIM) as shown in 

Figure1a). The current-voltage (I-V) characteristics of the device is shown in Fig. S4 a), which 

shows that the current density of LiInSnO4 is quite low which resulted from the high compactness 

and large optical band gap (5.2 eV) of the LiInSnO4 thin film. As shown in Fig. S4 a), the current 

density of LiInSnO4 thin film is ~10-9A/cm2 under the 2 V, applied voltage, that is two orders lower 

than the off current of the device as shown in electrical characterization of TFT. Moreover, it is 

observed that the device remains stable up to applies external bias ~11 V, which aspire that this 

thin dielectric film can be used securely up to 11 V of operating voltage. The data is replotted in 



terms of the leakage current (A/cm2) vs. the electric field (MV/cm), shown in Fig. S4 b), which is 

indicating that the breakdown field is greater than 1.75 MV/cm, which is reasonably high in 

comparison with the operating voltage of the TFT.  As it is well known, structural flaws like thin 

film pinholes and non-uniformity rather than crystalline grain boundaries or ionic leakage current 

(Li+) are the most likely causes of leakage current [4]. Therefore, it can be concluded that LiInSnO4 

thin film has the least number of pinholes with a good uniformity that can be an excellent choice 

for fabricating low operating voltage TFT.

Inclusive of leakage current measurement, the frequency-dependent capacitance (C-f) of LiInSnO4 

dielectric thin film has been examined with the same metal-insulator-metal (MIM) device in 

frequency, ranging from  20 Hz to 1 MHz and is depicted in Fig. S4 c). This data indicates that 

they areal capacitance of the LiInSnO4 thin film is 310 nF/cm2, at the frequency of 50 Hz, which 

linearly reduces up to 100 kHz. Here, when the frequency is raised to 105 Hz, a reduction of 14 

times the areal capacitance has been seen, which is because the mobile Li+ in dielectric is 

ineffective at promoting ionic polarisation at a higher frequency. It is worth noting that the areal 

capacitance of LiInSnO4 dielectric film is extremely high (>310 nF/cm2) at lower frequency 

ranges, due to which it is suitable for low operating voltage TFT [5, 6].
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Fig.S 4 a) Leakage current vs. applied voltage, b) leakage current vs. applied electric field, and 
c) capacitance vs. frequency (C-f) curve of LiInSnO4 dielectric in MIM (inset) structure                                                                                      
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Fig.S 5 Cross-sectional SEM of the p+-Si/LiInSnO4/ZnO



p +-Si

ZnO
LiInSnO4

AlAl

p +-Si

ZnO
LiInSnO4

AgAl
LiF MoO3

-2 -1 0 1 210-9

10-8

10-7

10-6

10-5

10-4

VG (V)

 

0.000

0.004

0.008

0.012

0.016

 

10-9

10-8

10-7

10-6

10-5

10-4

 I D
(A

) 

I D
1/

2 (
A

)1/
2

 I G
(A

)

VD = 2 V

-2 -1 0 1 2
10-10
10-9
10-8
10-7
10-6
10-5
10-4

VD = 2 V

VG(V)

 
I D

(A
) 

I D
1/

2 (
A

)1/
2

 I G
(A

)

0.000

0.002

0.004

0.006

0.008

 

10-10
10-9
10-8
10-7
10-6
10-5
10-4

 

0.0 0.5 1.0 1.5 2.0-20

-15

-10

-5

0

5

I D(
A)

VG = -0.5 to 2 V 
step = 0.31 V

VD(V)

-2 -1 0 1 2
10-6

10-5

I D(A
)

(I D)1/2
(A

)1/2

VG(V)

 VD = 2 V 

0.001

0.002

0.003

0.004

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200
I D(

A)
VG = -0.5 to 2 V 
step = 0.31 V

VD(V)

-2 -1 0 1 2

10-5

10-4

(I D)1/2
(A

)1/2
 VD = 2 V 

I D 
(A

)

VG (V)
0.000

0.004

0.008

0.012

0.016

a) c)

b) d)

e) f)

Fig.S 6 a) Output and b) Transfer characteristics of TFT with the symmetric electrode 
(Interchanging the S and D) , c) Output d) Transfer characteristics of TFT with an asymmetric 
electrode in opposite polarity (D - LiF/Al, S - MoO3/Ag); Transfer characteristics of e) Device 1 
and f) Device 2 with gate leakage (IG).
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Fig.S 7 Variation in the threshold voltage with the intensity of red and blue illumination a) 
Device 1 b) Device 2
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Fig. S 8 The sensitivity vs gate voltage plot of the Device 1 (D1) and Device 2 (D2) under a) red 
and b) blue illumination at different intensities 
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Fig.S 9 Variation in the sensitivity of devices 1 and 2 with light intensity under a) red and b) blue 
at zero gate biasing (VG = 0 V) and under c)  red and d) blue illumination at VG = 2 V
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Fig.S 10 Variation in the Detectivity of devices 1 and 2 with light intensity under a) red and b) 
blue at zero gate biasing (VG = 0 V) and under c)  red and d) blue illumination at VG = 2 V
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Fig.S 11 Absorbance spectra of the a) ZnO, and b) LiInSnO4/ ZnO thin film fabricated on quartz 
substrate ; photoluminescence spectra of a) ZnO, b) LiInSnO4/ZnO and e) LiInSnO4 thin film
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Fig.S 12 Transient response of TFT for single cycle under a) red and b) blue for symmetric S-D 
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response time (Rise time (Ʈ Rise) and  fall time (ƮFall))
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