Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Magnetic Order in A Quenched-High-Temperature-Phase of Cu-Doped MnBi

Gina Angelo,^a Jeremy G. Philbrick,^b Jian Zhang,^d Tai Kong,^{b,c} Xin Gui^{a*}

^a Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA

^b Department of Physics, University of Arizona, Tucson, AZ, 85721, USA

^c Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA

^d The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Table of Contents

Table S1	
Table S2	4
Figure S1	6
Figure S2	7
Figure S3	8
Figure S4	9
Figure S5	10
Figure S6	11
Figure S7	12
Figure S8	13

Atom	Wyck.	Occ.	x	У	z	U_{eq}
Bi1	6 <i>h</i>	1	0.2946 (1)	0.1473 (1)	1⁄4	0.0129(1)
Bi2	2c	0.843 (3)	1/3	2/3	1⁄4	0.0102 (2)
Bi3	6 <i>h</i>	0.036(1)	0.2275 (5)	0.7725 (5)	1⁄4	0.036(1)
Mn1	6g	1	1/2	0	0	0.0134 (3)
Mn2	2d	0.67 (6)	² / ₃	¹ / ₃	1⁄4	0.014 (1)
Cu1	2d	0.10 (6)	² / ₃	¹ / ₃	1/4	0.014(1)
Mn3	4f	0.1156	² / ₃	¹ / ₃	0.138 (4)	0.014(1)

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for $Cu_xMn_{1-x}Bi$ at 150 (2) K. (U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor (Å²))

Cu_{0.04(2)}Mn_{0.96(2)}Bi_{0.99(1)}:

Cu_{0.03(2)}Mn_{0.97(2)}Bi_{0.99(1)}:

Atom	Wyck.	Occ.	x	у	Z	U _{eq}
Bi1	6 <i>h</i>	1	0.8527(1)	0.1473 (1)	1⁄4	0.0129 (2)
Bi2	2c	0.820 (4)	1/3	2/3	1⁄4	0.0106 (3)
Bi3	6 <i>h</i>	0.040(1)	0.2280 (6)	0.7720 (6)	1⁄4	0.0106 (5)
Mn1	6g	1	1/2	0	0	0.0138 (3)
Mn2	2d	0.49 (7)	² / ₃	¹ / ₃	1⁄4	0.008 (2)
Cu1	2d	0.16(7)	² / ₃	$^{1}/_{3}$	1⁄4	0.008 (2)
Mn3	4f	0.176	² / ₃	¹ / ₃	0.152 (2)	0.008 (2)

Cu_{0.08(2)}Mn_{0.92(2)}Bi_{0.99(1)}:

Ato	om Wyck.	Occ.	x	У	z	U_{eq}
Bi	1 6h	1	0.7055 (1)	0.8527(1)	1/4	0.0140 (2)
Bi	2 2 <i>d</i>	0.820 (4)	¹ / ₃	² / ₃	1/4	0.0118 (3)
Bi	3 6h	0.0414 (13)	0.458(1)	0.229(1)	1/4	0.0118 (3)
Mr	nl 6g	1	1/2	0	0	0.0143 (3)
Mr	n2 2 <i>c</i>	0.41 (8)	² / ₃	¹ / ₃	1/4	0.018 (2)
Cu	11 2c	0.31 (8)	² / ₃	¹ / ₃	1/4	0.018 (2)
Mr	n3 4 <i>f</i>	0.1363	$^{2}/_{3}$	$^{1}/_{3}$	0.144 (4)	0.018 (2)

Cu_{0.11(4)}Mn_{0.89(4)}Bi_{0.99(1)}:

Atom	Wyck.	Occ.	x	у	z	U_{eq}
Bi1	6 <i>h</i>	1	0.2947 (1)	0.1473 (1)	1⁄4	0.0149 (2)
Bi2	2c	0.799 (3)	$^{1}/_{3}$	$^{2}/_{3}$	1⁄4	0.0129 (2)
Bi3	6 <i>h</i>	0.0489(1)	0.5409 (7)	0.7705 (3)	1⁄4	0.0129 (3)
Mn1	6g	0.92 (3)	1/2	0	0	0.0160 (4)
Cu1	6g	0.08 (3)	1/2	0	0	0.0160 (4)
Mn2	2d	0.43 (5)	² / ₃	¹ / ₃	1⁄4	0.014(1)
Cu2	2d	0.21 (5)	² / ₃	¹ / ₃	1⁄4	0.014(1)
Mn3	4f	0.1808	$^{2}/_{3}$	1/3	0.148 (2)	0.014(1)

Atom	Wyck.	Occ.	x	У	Z	U_{eq}
Bi1	6 <i>h</i>	1	0.2960(1)	0.1480(1)	1⁄4	0.0151 (3)
Bi2	2c	0.738 (5)	$^{1}/_{3}$	$^{2}/_{3}$	1⁄4	0.0143 (4)
Bi3	6 <i>h</i>	0.074 (2)	0.5389 (9)	0.7694 (5)	1⁄4	0.0143 (6)
Mn1	6g	0.88 (6)	1/2	0	0	0.0165 (8)
Cu1	6g	0.12 (6)	1/2	0	0	0.0165 (8)
Mn2	2d	0.25 (9)	² / ₃	¹ / ₃	1⁄4	0.017 (5)
Cu2	2d	0.20 (9)	² / ₃	¹ / ₃	1⁄4	0.017 (5)
Mn3	4f	0.2754	² / ₃	¹ / ₃	0.154 (3)	0.017 (5)

Cu_{0.14(7)}Mn_{0.86(7)}Bi_{0.99(1)}:

_	Atom	I	TI	I	Ι	I	I		
_	Alom	U_{11}	U_{22}		U_{23}	U ₁₃	$\frac{U_{12}}{2}$		
	B11	0.0101 (2)	0.0128 (2)	0.0148 (2)	-0.0000(1)	0	0.0050(1)		
	Bi2	0.0091 (2)	0.0091 (2)	0.0123 (3)	0	0	0.0046 (1)		
	Bi3	0.0091 (5)	0.0091 (5)	0.0123 (2)	0	0	0.0046 (3)		
	Mn1	0.0148 (6)	0.0167 (6)	0.0094 (5)	0.0021 (4)	0.0006 (4)	0.0083 (5)		
	Mn2	0.0095 (8)	0.0095 (8)	0.024 (2)	0	0	0.0048 (4)		
	Cu1	0.0095 (8)	0.0095 (8)	0.024 (2)	0	0	0.0048 (4)		
	Mn3	0.0095 (8)	0.0095 (8)	0.024 (2)	0	0	0.0048 (4)		
Cu ₀	0.04(2)Mn ₀	.96(2)Bi0.99(1):							
_	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
	Bi1	0.0118 (2)	0.0118 (2)	0.0173 (2)	0.0000(1)	0.0000(1)	0.0075 (2)		
	Bi2	0.0076 (3)	0.0076 (3)	0.0165 (4)	0	0	0.0038 (2)		
	Bi3	0.0076 (6)	0.0076 (6)	0.0165 (3)	0	0	0.0038 (3)		
	Mn1	0.0135 (7)	0.0161 (7)	0.0127 (7)	0.0019 (5)	0.0012 (5)	0.0081 (6)		
	Mn2	0.009(1)	0.009(1)	0.008 (3)	0	0	0.0042 (5)		
	Cu1	0.009(1)	0.009(1)	0.008 (3)	0	0	0.0042 (5)		
	Mn3	0.009(1)	0.009(1)	0.008 (3)	0	0	0.0042 (5)		
Cu ₍	$Cu_{0.08(2)}Mn_{0.92(2)}Bi_{0.99(1)}$:								
	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
	Bi1	0.0100 (2)	0.0134 (2)	0.0175 (3)	0.0001(1)	0	0.0050(1)		
	Bi2	0.0091 (3)	0.0091 (3)	0.0172 (4)	0	0	0.0045 (2)		

Table S2. Anisotropic thermal displacement parameters for $Cu_xMn_{1-x}Bi$ at 150 (2) K. $Cu_{0.03(2)}Mn_{0.97(2)}Bi_{0.99(1)}$:

	B11	0.0100 (2)	0.0134 (2)	0.0175(3)	0.0001(1)	0	0.0050(1)
	Bi2	0.0091 (3)	0.0091 (3)	0.0172 (4)	0	0	0.0045 (2)
	Bi3	0.0091 (7)	0.0091 (7)	0.0172 (3)	0	0	0.0045 (3)
	Mn1	0.0140 (7)	0.0170 (8)	0.0130 (8)	-0.0022 (5)	-0.0009 (5)	0.0087 (6)
	Mn2	0.010(1)	0.010(1)	0.034 (3)	0	0	0.0051 (6)
	Cu1	0.010(1)	0.010(1)	0.034 (3)	0	0	0.0051 (6)
_	Mn3	0.010(1)	0.010(1)	0.034 (3)	0	0	0.0051 (6)

 $Cu_{0.11(4)}Mn_{0.89(4)}Bi_{0.99(1)}$:

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0109 (2)	0.0148 (1)	0.0176 (2)	0.0000(1)	0	0.0055 (1)
Bi2	0.0101 (2)	0.0101 (2)	0.0185 (3)	0	0	0.0051 (1)
Bi3	0.0101 (4)	0.0101 (4)	0.0185 (2)	0	0	0.0051 (2)
Mn1	0.0164 (6)	0.0193 (6)	0.0137 (6)	0.0023 (4)	0.0013 (4)	0.0099 (4)
Cu1	0.0164 (6)	0.0193 (6)	0.0137 (6)	0.0023 (4)	0.0013 (4)	0.0099 (4)
Mn2	0.0103 (7)	0.0103 (7)	0.020(2)	0	0	0.0052 (4)
Cu2	0.0103 (7)	0.0103 (7)	0.020 (2)	0	0	0.0052 (4)
Mn3	0.0103 (7)	0.0103 (7)	0.020 (2)	0	0	0.0052 (4)

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0088 (4)	0.0135 (3)	0.0214 (4)	-0.0001 (2)	0	0.0044 (2)
Bi2	0.0090 (5)	0.0090 (5)	0.0251 (7)	0	0	0.0045 (3)
Bi3	0.0090 (5)	0.0090 (5)	0.0251 (7)	0	0	0.0045 (3)
Mn1	0.016(1)	0.020(1)	0.016 (1)	0.004 (1)	0.002(1)	0.011 (1)
Cu1	0.016(1)	0.020(1)	0.016(1)	0.004 (1)	0.002(1)	0.011(1)
Mn2	0.009 (2)	0.009(2)	0.033 (16)	0	0	0.003 (1)
Cu2	0.009 (2)	0.009(2)	0.033 (16)	0	0	0.003 (1)
Mn3	0.009 (2)	0.009 (2)	0.033 (16)	0	0	0.003 (1)

Cu_{0.14(7)}Mn_{0.86(7)}Bi_{0.99(1)}:

Figure S1. Single crystal X-ray diffraction patterns from (0kl), (h0l) and (hk0) planes for $Cu_{0.03(2)}Mn_{0.97(2)}Bi_{0.99(1)}$.

Figure S2. Single crystal X-ray diffraction patterns from (0kl), (h0l) and (hk0) planes for $Cu_{0.04(2)}Mn_{0.96(2)}Bi_{0.99(1)}$.

Figure S3. Single crystal X-ray diffraction patterns from (0kl), (h0l) and (hk0) planes for $Cu_{0.08(2)}Mn_{0.92(2)}Bi_{0.99(1)}$.

Figure S4. Single crystal X-ray diffraction patterns from (0kl), (h0l) and (hk0) planes for $Cu_{0.11(4)}Mn_{0.89(4)}Bi_{0.99(1)}$.

Figure S5. Single crystal X-ray diffraction patterns from (0kl), (h0l) and (hk0) planes for $Cu_{0.14(7)}Mn_{0.86(7)}Bi_{0.99(1)}$.

Figure S6. Comparison of powder XRD patterns for $Cu_xMn_{1-x}Bi$ and reported QHTP-MnBi.

Figure S7. Temperature-dependent heat capacity (C_p) of $Cu_{0.04}Mn_{0.96}Bi_{0.99}$.

Figure S8. The first derivative of χT vs T curves for (a) $Cu_{0.11(4)}Mn_{0.89(4)}Bi_{0.99(1)}$ and (b) $Cu_{0.14(7)}Mn_{0.86(7)}Bi_{0.99(1)}$.