## Efficient Radical-Based NIR Organic Light-Emitting Diodes with

## **Emission peak Exceeding 800 nm**

Kuo Lv, Ming Zhang and Feng Li\*

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University Changchun, 130012, P. R. China

\*E-mail: <u>lifeng01@jlu.edu.cn</u>

### Contents

- 1. Synthesis Section
- 2. Photophysical parameters of TTM-NPNA in different solvents
- 3. TGA curve and electrochemical properties
- 4. Extracted results of TD-DFT calculations
- 5. Electroluminescence Performances
- 6. References

### **General information**

All reagents and solvents required for synthesis and characterization are purchased from commercial suppliers and used directly without any treatment. The nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were recorded on the Bruker AVANCEIII 500 spectrometer at 500 MHz at 298 K and tetramethyl silane (TMS) ( $\delta H = 0$  ppm) as the internal standard. MALDI-TOF mass spectra were recorded on a Brucker Autoflex speed TOF/TOF mass spectrometer with DCTB as a matrix. A shimadzu UV-2550 spectrophotometer was applied to record the ultraviolet (UV)-visible spectra. Fluorescence spectra were recorded using a RF-5301 PC spectrophotometer and QE pro. All of PLQEs are determined with a calibrated integrating sphere system and using QE pro of Ocean Insight as fluorescence spectrometer. The electrochemical oxidation and reduction potentials were recorded using an electrochemical analyzer (CHI660C, CH Instruments, USA). The fluorescence decay spectra were recorded on an Edinburgh fluorescence spectrometer (FLS980), and the lifetime of the excited states was measured by the time-correlated single photon counting method under the excitation of a laser (378 nm). Elemental analysis (C, H and N) was performed on a Elementar Vario micro cube elemental analyzer. Thermal gravimetric analysis (TGA) was characterized by a TAINSTRUMENTS Q500 TGA analyzer. Ready-made indium tin oxide (ITO) glass substrates were purchased and cleaned. After dried with N2, they were treated with UV irradiation for 20 min and next transferred to a vacuum deposition system with the pressure of  $1-4 \times 10^{-6}$  mbar. The MoO<sub>3</sub> layer was deposited at a rate of 0.1 Å s<sup>-1</sup>. All the organic layers were deposited at 0.2-0.4 Å s<sup>-1</sup>. The evaporation rate of cathode LiF

and Al metal layer were 0.1 Å s<sup>-1</sup> and 0.3-0.8 Å s<sup>-1</sup> respectively. The current-voltage characteristics were measured using a Keithley 2400 programmable electrometer. The EL spectra and EQEs were measured using QE pro spectroradiometer of Ocean Insight together with a calibrated integrating sphere at room temperature in glove box.

## **1. Synthesis Section**

The HTTM was prepared as reported<sup>1</sup>.



Scheme S1. The synthesis route of TTM-NPNA

#### (1) Synthesis of HTTM-PA

HTTM (1.00 g, 1.80 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) - aniline (0.39 g, 1.80 mmol) was dissolved in a mixed solvent of toluene (12 ml),  $K_3PO_4$  aqueous solution (8 ml, 2 mol / L) and ethanol (4 ml), and catalyst Pd(PPh<sub>3</sub>)<sub>4</sub> (0.10 g, 0.09 mmol) was added under argon atmosphere. The mixture was stirred at 95°C for 48

h under argon atmosphere. After the reaction mixture cooling to room temperature, the solution was extracted with dichloromethane. Organic layer was collected and dried. The solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 8:1 v/v). **HTTM-PA** was obtained as a white solid (0.39 g, 36% yield). <sup>1</sup>H NMR (500 MHz,  $CD_2Cl_2$ )  $\delta$  7.54 (d, J = 2.0 Hz, 1H), 7.41 (s, 2H), 7.41 – 7.40 (m, 2H), 7.39 (s, 1H), 7.29 – 7.25 (m, 2H), 6.76 (s, 1H), 6.75 (d, J = 3.7 Hz, 2H), 4.08 (s, 2H). MALDI-TOF-MS (m/z): calculated for C<sub>25</sub>H<sub>13</sub>Cl<sub>8</sub>N, 608.853; found, 608.664. Elem. Anal. Calcd for C<sub>25</sub>H<sub>13</sub>Cl<sub>8</sub>N: C 49.15, H 2.14, N 2.29; found, C 50.11, H 2.43, N 2.29.

#### (2) Preparation of HTTM-NPNA

**HTTM-PA** (1.22 g, 2.00 mmol) and 2-bromonaphthalene (1.24 g, 6.00 mmol) was dissolved in dry toluene (25 ml). Pt(t-Bu)<sub>3</sub> (0.62 ml, 10%w/v, 0.30 mmol), Cs<sub>2</sub>CO<sub>3</sub> (1.95 g, 6.00 mmol) and catalyst Pd(OAc)<sub>2</sub> (33.70 mg, 0.15 mmol) was added under argon atmosphere. The mixture was stirred at 115°C for 48 h under argon atmosphere. After the reaction mixture cooling to room temperature, the solution was extracted with dichloromethane. Organic layer was collected and dried. The solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1 v/v). **HTTM-NPNA** was obtained as a white solid (1.02 g, 59% yield). <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.84 (s, 1H), 7.82 (d, J = 2.7 Hz, 2H), 7.81 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 2.1 Hz, 1H), 7.65 (s, 1H), 7.54 (s, 2H), 7.44 (d, J = 1.9 Hz, 1H), 7.43 (s, 2H), 7.42 (d, J = 2.1 Hz, 2H), 7.38 (d, J = 2.2 Hz, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.32 (d, J = 2.2 Hz, 2H), 7.24 (d, J = 2.2 Hz, 1H), 7.07

4

(d, J = 2.4 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.71 (s, 1H). MALDI-TOF-MS (m/z): calculated for  $C_{45}H_{25}Cl_8N$ , 862.944; found, 862.063. Elem. Anal. Calcd for  $C_{45}H_{25}Cl_8N$ : C 62.61, H 2.92, N 1.62; found, C 62.65, H 2.80, N 1.63.

#### (3) Preparation of **TTM-NPNA**

Under argon atmosphere and in the dark, **HTTM-NPNA** (0.86 g, 1.00 mmol) was dissolved in dry THF (20 ml). Then t-BuOK (1.12 g, 10.00 mmol) was added. The solution was stirred for 5 h in the dark at room temperature, and then p-Chloranil (1.23 g, 5.00 mmol) was added. The solution was stirred for further 1 h. After the reaction finished, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1 v/v). The crude product was recrystallized twice from dichloromethane and methanol and a gray solid was obtained (0.65 g, 75% yield). MALDI-TOF-MS (m/z): calculated for C<sub>45</sub>H<sub>24</sub>Cl<sub>8</sub>N, 861.936; found, 861.064. Elem. Anal. Calcd for C<sub>45</sub>H<sub>24</sub>Cl<sub>8</sub>N: C 62.68, H 2.81, N 1.62; found, C 62.80, H 2.92, N 1.58.



Fig. S1 <sup>1</sup>H-NMR spectrum of HTTM-PA in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S2 <sup>1</sup>H-NMR spectrum of HTTM-NPNA in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S3 MALDI-TOF-MS spectrum of HTTM-PA.



Fig. S4 MALDI-TOF-MS spectrum of HTTM-NPNA.



Fig. S5 MALDI-TOF-MS spectrum of TTM-NPNA.

# 2.Photophysical Parameters of TTM-NPNA in different solvents



Fig. S6 The normalized UV-vis absorption and PL spectra of **TTM-NPNA** in various solvents (10<sup>-5</sup> M) at room temperature.



Fig. S7 Fluorescence decay curves of TTM-NPNA in (a) toluene and (b) n-butyl ether.

| Radical | Solvent       | $\lambda_{abs}^{[a]}$ (nm) | λ <sub>PL</sub> [b][c]<br>(nm) | PLQE <sup>[b][c]</sup><br>(%) | τ <sup>[d]</sup><br>(ns) | ${k_r^{CT[e]}} \ 10^7 \ ({s^{-1}})$ | k <sub>nr</sub> <sup>CT[e]</sup><br>10 <sup>7</sup> (s <sup>-1</sup> ) |
|---------|---------------|----------------------------|--------------------------------|-------------------------------|--------------------------|-------------------------------------|------------------------------------------------------------------------|
|         | cyclohexane   | 655                        | 745                            | 23                            | 6.7                      | 3.41                                | 11.42                                                                  |
| TTM-    | toluene       | 671                        | 810                            | 24                            | 7.3                      | 3.27                                | 10.36                                                                  |
| NPNA    | n-butyl ether | 665                        | 818                            | 16                            | 5.3                      | 3.01                                | 15.82                                                                  |
|         | chloroform    | 669                        | 916                            | 1                             | _[f]                     | -                                   | -                                                                      |

Table S1. Photophysical parameters of TTM-NPNA in different solvents.

<sup>[a]</sup> long-wavelength absorption in different solvents. <sup>[b]</sup> excited at 375nm. <sup>[c]</sup> measured with a calibrated integrating sphere system. <sup>[d]</sup> measured using Edinburgh fluorescence spectrometer (FLS980) at room temperature. <sup>[e]</sup> Calculated from the equation:  $\phi = k_r/(k_r + k_{nr})$ ;  $\tau = 1/(k_r + k_{nr})$ . <sup>[f]</sup> beyond the measurement-range of the instruments.



Fig. S8 The optimized geometry configuration of  $D_0$  state and the related dihedral angles ( $\theta_1$ ,  $\theta_2$  and  $\theta_3$ ) for **TTM-NPNA** in cyclohexane.

| TTM-        |       | $	heta_1(\circ)$ |                    |       | $	heta_2(^\circ)$ |                    |     | $	heta_3(\circ)$ |                        |
|-------------|-------|------------------|--------------------|-------|-------------------|--------------------|-----|------------------|------------------------|
| NPNA        | $D_0$ | $D_1$            | $\Delta_{D_1-D_0}$ | $D_0$ | $D_1$             | $\Delta_{D_1-D_0}$ | D   | D D1             | $\Delta_{D^{1}-D^{0}}$ |
| cyclohexane | 29.9  | 35.9             | 6.0                | -34.8 | -53.2             | -18.4              | -44 | .4 -35.0         | 9.4                    |
| toluene     | 29.8  | 35.2             | 5.4                | -34.7 | -51.9             | -17.2              | -44 | .5 -35.3         | 9.2                    |
| chloroform  | 29.4  | 32.6             | 3.2                | -34.2 | -47.9             | -13.7              | -44 | .9 -36.4         | 8.5                    |

Table S2. The dihedral angle values of  $\theta_1$ -  $\theta_3$  and their variations between D<sub>0</sub> and D<sub>1</sub> states.

# 3. TGA curve and Electrochemical properties



Fig. S9 TGA thermograph of **TTM-NPNA** recorded under nitrogen at a heating rate of 10°C/min.



Fig. S10. Repeated cyclic voltammetry measurements (15 cycles) of TTM-NPNA.

## 4. Extracted results of TD-DFT calculations

### TTM-NPNA (UB3LYP/6-31G(d,p))

Excitation energies and oscillator strengths:

Excited State 1: 2.091-A 1.5810 eV 784.20 nm f=0.1332 <S\*\*2>=0.843 218B ->219B 0.98617 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -5465.52635848 Copying the excited state density for this state as the 1-particle RhoCI density.

| Excited State       | 2: | 2.305-A  | 2.4508 eV | 505.89 nm | f=0.0056 |
|---------------------|----|----------|-----------|-----------|----------|
| <s**2>=1.078</s**2> |    |          |           |           |          |
| 218A ->220          | )A | -0.16112 |           |           |          |
| 219A ->220          | )A | 0.29581  |           |           |          |
| 209B ->219          | θB | 0.11975  |           |           |          |
| 215B ->219          | θB | -0.44792 |           |           |          |
| 217B ->219          | )B | 0.74203  |           |           |          |
| 218B ->219          | )B | 0.14752  |           |           |          |
| 218B ->220          | )B | -0.16418 |           |           |          |
|                     |    |          |           |           |          |
| Excited State       | 3: | 3.438-A  | 2.4711 eV | 501.73 nm | f=0.0000 |
| <s**2>=2.706</s**2> |    |          |           |           |          |
| 216A ->220          | )A | 0.11739  |           |           |          |
| 216A ->224          | 1A | 0.25205  |           |           |          |
| 217A ->221          | ΙA | -0.22416 |           |           |          |
| 218A ->221          | IA | -0.22240 |           |           |          |
| 219A ->221          | IA | -0.52468 |           |           |          |
| 219A ->227          | 7A | -0.10348 |           |           |          |
| 216B ->219          | )B | -0.16451 |           |           |          |
| 216B ->220          | )B | -0.13409 |           |           |          |
| 216B ->223          | BB | -0.24739 |           |           |          |
| 217B ->221          | В  | 0.24547  |           |           |          |
| 218B ->221          | В  | 0.54130  |           |           |          |
|                     |    |          |           |           |          |
| Excited State       | 4: | 3.322-A  | 2.5607 eV | 484.19 nm | f=0.0493 |
| <s**2>=2.509</s**2> |    |          |           |           |          |
| 216A ->221          | ΙA | -0.29310 |           |           |          |
| 217A ->224          | 1A | 0.17737  |           |           |          |
| 218A ->224          | 1A | 0.14744  |           |           |          |
| 219A ->220          | )A | 0.47508  |           |           |          |
|                     |    |          |           |           |          |

| 219A ->224A         | 0.27358          |           |           |          |
|---------------------|------------------|-----------|-----------|----------|
| 219A ->228A         | 0.10079          |           |           |          |
| 216B ->221B         | 0.29601          |           |           |          |
| 217B ->219B         | -0.30468         |           |           |          |
| 217B ->223B         | -0.19798         |           |           |          |
| 218B ->220B         | -0.40712         |           |           |          |
| 218B ->223B         | -0.26063         |           |           |          |
|                     |                  |           |           |          |
| Excited State 5:    | 2.188-A          | 2.6616 eV | 465.82 nm | f=0.0090 |
| <s**2>=0.947</s**2> |                  |           |           |          |
| 218A ->222A         | -0.23673         |           |           |          |
| 219A ->222A         | 0.14212          |           |           |          |
| 210B ->219B         | 0.14490          |           |           |          |
| 212B ->219B         | 0.44213          |           |           |          |
| 213B ->219B         | 0.54713          |           |           |          |
| 214B ->219B         | -0.51927         |           |           |          |
| 216B ->219B         | -0.26230         |           |           |          |
|                     |                  |           |           |          |
| Excited State 6:    | 2.117 <b>-</b> A | 2.6638 eV | 465.44 nm | f=0.0018 |
| <s**2>=0.871</s**2> |                  |           |           |          |
| 212B ->219B         | 0.11840          |           |           |          |
| 213B ->219B         | 0.14405          |           |           |          |
| 214B ->219B         | -0.15543         |           |           |          |
| 216B ->219B         | 0.94935          |           |           |          |
| 218B ->221B         | 0.11242          |           |           |          |
|                     |                  |           |           |          |
| Excited State 7:    | 2.301-A          | 2.7531 eV | 450.34 nm | f=0.0195 |
| <s**2>=1.074</s**2> |                  |           |           |          |
| 216A ->221A         | -0.11334         |           |           |          |
| 218A ->220A         | 0.25456          |           |           |          |
| 219A ->220A         | -0.17118         |           |           |          |
| 219A ->224A         | 0.14007          |           |           |          |
| 209B ->219B         | -0.24370         |           |           |          |
| 211B ->219B         | -0.19640         |           |           |          |
| 215B ->219B         | 0.57833          |           |           |          |
| 216B ->221B         | 0.11402          |           |           |          |
| 217B ->219B         | 0.57497          |           |           |          |
| 218B ->223B         | -0.12426         |           |           |          |
|                     |                  |           |           | _        |
| Excited State 8:    | 2.154-A          | 2.7921 eV | 444.05 nm | f=0.0075 |
| <s**2>=0.910</s**2> |                  |           |           |          |
| 218A ->222A         | -0.21466         |           |           |          |
| 219A ->222A         | 0.14175          |           |           |          |
| 210B ->219B         | 0.16996          |           |           |          |

| 212B ->219B                | 0.70755                             |           |           |          |
|----------------------------|-------------------------------------|-----------|-----------|----------|
| 213B ->219B                | -0.38094                            |           |           |          |
| 214B ->219B                | 0.44804                             |           |           |          |
|                            |                                     |           |           |          |
| Excited State 9:           | 2.970-A                             | 2.8506 eV | 434.93 nm | f=0.1757 |
| <s**2>=1.955</s**2>        |                                     |           |           |          |
| 215A ->220A                | 0.10446                             |           |           |          |
| 216A ->221A                | 0.24002                             |           |           |          |
| 217A ->220A                | -0.16295                            |           |           |          |
| 217A ->224A                | -0.15571                            |           |           |          |
| 218A ->220A                | -0.12064                            |           |           |          |
| 219A ->220A                | 0.48242                             |           |           |          |
| 219A ->224A                | -0.20922                            |           |           |          |
| 219A ->228A                | 0.12138                             |           |           |          |
| 209B ->219B                | -0.18184                            |           |           |          |
| 211B ->219B                | -0.35909                            |           |           |          |
| 215B ->219B                | 0.34148                             |           |           |          |
| 215B ->220B                | -0.11281                            |           |           |          |
| 216B ->221B                | -0.23546                            |           |           |          |
| 217B ->220B                | 0.17787                             |           |           |          |
| 217B ->223B                | 0.14267                             |           |           |          |
| 218B ->220B                | -0.13720                            |           |           |          |
| 218B ->223B                | 0.24333                             |           |           |          |
|                            |                                     |           |           |          |
| Excited State 10:          | 2.111-A                             | 2.9776 eV | 416.39 nm | f=0.0038 |
| <s**2>=0.864</s**2>        |                                     |           |           |          |
| 218A ->222A                | -0.11999                            |           |           |          |
| 218A ->223A                | 0.14382                             |           |           |          |
| 210B ->219B                | 0.90067                             |           |           |          |
| 212B ->219B                | -0.31915                            |           |           |          |
|                            |                                     |           |           |          |
| Excited State 11:          | 2.268-A                             | 2.9836 eV | 415.56 nm | f=0.0115 |
| <s**2>=1.036</s**2>        |                                     |           |           |          |
| 218A ->220A                | 0.13846                             |           |           |          |
| 218A ->225A                | 0.10267                             |           |           |          |
| 209B ->219B                | -0.41835                            |           |           |          |
| 211B ->219B                | 0.81426                             |           |           |          |
| 218B ->220B                | -0.12859                            |           |           |          |
| Excited State 12.          | 2.287-A                             | 3.0839 eV | 402 04 nm | f=0.1136 |
| < <u>S**2&gt;=1.057</u>    | , , , , , , , , , , , , , , , , , , | 2.000000  |           |          |
| 212A ->72A                 | 0 13613                             |           |           |          |
| 2121 ->2221<br>218A ->220A | -0 14279                            |           |           |          |
| 2184 ->2201                | 0 14701                             |           |           |          |
| 21011 - 22011              | 0.17/71                             |           |           |          |

| -0.12648                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.24898                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.12445                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.45049                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.48817                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.26632                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.10652                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.40018                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.11268                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.13171                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 2.469-A                                                                                                                                                                                                 | 3.1356 eV                                                                                                                                                                                                            | 395.41 nm                                                                                                                                                                                                                      | f=0.6507                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.10543                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.30671                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.11401                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.35587                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.21053                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.30319                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.12790                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| -0.11150                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.69524                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.69524                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.69524<br>-0.12173                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| 0.69524<br>-0.12173<br>2.894-A                                                                                                                                                                          | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A                                                                                                                                                                          | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294                                                                                                                                                               | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049                                                                                                                                                    | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180                                                                                                                                        | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182                                                                                                                             | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176                                                                                                                  | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421                                                                                                      | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787                                                                                          | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372                                                                               | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646                                                                    | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646                                                                    | 3.2048 eV                                                                                                                                                                                                            | 386.87 nm                                                                                                                                                                                                                      | f=0.0217                                                                                                                                                                                                                                 |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A                                                         | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A                                                         | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A<br>-0.16668                                             | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A<br>-0.16668<br>0.20422                                  | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A<br>-0.16668<br>0.20422<br>0.24924                       | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A<br>-0.16668<br>0.20422<br>0.24924<br>0.11243            | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
| 0.69524<br>-0.12173<br>2.894-A<br>0.11294<br>0.21049<br>-0.31180<br>0.76182<br>0.10176<br>-0.16421<br>-0.19787<br>0.25372<br>0.14646<br>2.731-A<br>-0.16668<br>0.20422<br>0.24924<br>0.11243<br>0.17949 | 3.2048 eV<br>3.2572 eV                                                                                                                                                                                               | 386.87 nm<br>380.65 nm                                                                                                                                                                                                         | f=0.0217<br>f=0.0279                                                                                                                                                                                                                     |
|                                                                                                                                                                                                         | -0.12648<br>0.24898<br>0.12445<br>0.45049<br>0.48817<br>0.26632<br>-0.10652<br>0.40018<br>0.11268<br>0.13171<br>2.469-A<br>-0.10543<br>-0.30671<br>0.11401<br>0.35587<br>-0.21053<br>-0.30319<br>0.12790<br>-0.11150 | -0.12648<br>0.24898<br>0.12445<br>0.45049<br>0.48817<br>0.26632<br>-0.10652<br>0.40018<br>0.11268<br>0.13171<br>2.469-A 3.1356 eV<br>-0.10543<br>-0.30671<br>0.11401<br>0.35587<br>-0.21053<br>-0.30319<br>0.12790<br>-0.11150 | -0.12648<br>0.24898<br>0.12445<br>0.45049<br>0.48817<br>0.26632<br>-0.10652<br>0.40018<br>0.11268<br>0.13171<br>2.469-A 3.1356 eV 395.41 nm<br>-0.10543<br>-0.30671<br>0.11401<br>0.35587<br>-0.21053<br>-0.30319<br>0.12790<br>-0.11150 |

| 218B ->221B                                      | 0.78069  |           |           |          |
|--------------------------------------------------|----------|-----------|-----------|----------|
| 218B ->226B                                      | 0.13456  |           |           |          |
| 218B ->227B                                      | 0.10227  |           |           |          |
| Excited State 16:                                | 2.236-A  | 3.2636 eV | 379.90 nm | f=0.1915 |
| <s**2>=1.000</s**2>                              |          |           |           |          |
| 218A ->222A                                      | -0.54070 |           |           |          |
| 219A ->222A                                      | 0.61709  |           |           |          |
| 210B ->219B                                      | -0.27206 |           |           |          |
| 212B ->219B                                      | -0.35738 |           |           |          |
| 213B ->219B                                      | -0.12547 |           |           |          |
| 218B ->221B                                      | 0.11944  |           |           |          |
| Excited State 17: <pre><s**2>=0.849</s**2></pre> | 2.096-A  | 3.2993 eV | 375.79 nm | f=0.0007 |
| 208B ->219B                                      | -0.23315 |           |           |          |
| 213B ->219B                                      | 0.67844  |           |           |          |
| 214B ->219B                                      | 0.67843  |           |           |          |
| Excited State 18:                                | 2.532-A  | 3.3728 eV | 367.60 nm | f=0.0338 |
| <s**2>=1.353</s**2>                              |          |           |           |          |
| 216A ->221A                                      | 0.16670  |           |           |          |
| 217A ->224A                                      | -0.12189 |           |           |          |
| 218A ->220A                                      | 0.62369  |           |           |          |
| 219A ->220A                                      | 0.33763  |           |           |          |
| 219A ->224A                                      | 0.33325  |           |           |          |
| 215B ->219B                                      | -0.22610 |           |           |          |
| 216B ->221B                                      | -0.13436 |           |           |          |
| 217B ->223B                                      | 0.15872  |           |           |          |
| 218B ->220B                                      | 0.32236  |           |           |          |
| 218B ->223B                                      | -0.10950 |           |           |          |
| Excited State 19:                                | 3.223-A  | 3.4075 eV | 363.86 nm | f=0.0011 |
| <s**2>=2.347</s**2>                              |          |           |           |          |
| 214A ->221A                                      | 0.11050  |           |           |          |
| 216A ->221A                                      | 0.20603  |           |           |          |
| 217A ->224A                                      | -0.22973 |           |           |          |
| 218A ->220A                                      | -0.38489 |           |           |          |
| 218A ->224A                                      | 0.10066  |           |           |          |
| 219A ->220A                                      | -0.10652 |           |           |          |
| 219A ->224A                                      | 0.51359  |           |           |          |
| 219A ->228A                                      | -0.15923 |           |           |          |
| 216B ->221B                                      | -0.20786 |           |           |          |
| 217B ->223B                                      | 0.19834  |           |           |          |

| 218B ->220B         | -0.16868 |           |           |          |
|---------------------|----------|-----------|-----------|----------|
| 218B ->223B         | -0.43265 |           |           |          |
| 218B ->228B         | -0.10084 |           |           |          |
|                     |          |           |           |          |
| Excited State 20:   | 2.383-A  | 3.4570 eV | 358.64 nm | f=0.0087 |
| <s**2>=1.169</s**2> |          |           |           |          |
| 218A ->223A         | -0.56986 |           |           |          |
| 219A ->223A         | 0.72656  |           |           |          |
| 219A ->226A         | -0.19102 |           |           |          |
| 210B ->219B         | 0.15469  |           |           |          |
| 218B ->226B         | 0.11843  |           |           |          |

# **5.**Electroluminescence Performances



Fig. S11 Electroluminescent properties of **TTM-NPNA**. (a) Materials used in this work; (b) PL spectrum of the **TTM-NPNA** doped film (5.0 wt%-doped in CBP film); (c) EL spectra of **TTM- NPNA** from 4.5-11V; (d) The curve of current density versus EQE for **TTM-NPNA** based device.



Fig. S12 Summary of EQE in state-of-the-art NIR-OLEDs against the EL peak wavelength (over 800 nm).



Fig. S13 Measured angular dependence of electroluminescence of **TTM-NPNA** based OLED with the dopant concentration of 5 wt% (black squares), and the angular dependence predicted for Lambertian emission (red dotted line).



Fig. S14 Variation of (a) EL intensity and (b) spectra of the **TTM-NPNA** based device versus operating time driven at a constant current density of 6 mA/cm<sup>2</sup>.

| λELmax | EQE  | Emitter material   | [ref]     | λELmax | FOF (%) | Emitter material      | [ref] |
|--------|------|--------------------|-----------|--------|---------|-----------------------|-------|
| (nm)   | (%)  |                    | [iei]     | (nm)   |         |                       | lieij |
| 800    | 1.9  | metal free emitter | 2         | 800    | 1       | metal complex emitter | 3     |
| 802    | 0.43 | metal free emitter | 4         | 803    | 9.58    | metal complex emitter | 5     |
| 804    | 2.2  | metal free emitter | 6         | 811    | 0.97    | metal complex emitter | 7     |
| 810    | 0.51 | metal free emitter | 8         | 814    | 1.5     | metal complex emitter | 9     |
| 814    | 0.5  | metal free emitter | 10        | 826    | 0.49    | metal complex emitter | 11    |
| 822    | 3.9  | metal free emitter | This work | 847    | 0.19    | metal complex emitter | 13    |
| 823    | 0.27 | metal free emitter | 12        | 848    | 2.8     | metal complex emitter | 15    |
| 824    | 0.16 | metal free emitter | 14        | 846    | 1.5     | metal complex emitter | 15    |
| 828    | 0.41 | metal free emitter | 8         | 855    | 1       | metal complex emitter | 17    |
| 830    | 2.47 | metal free emitter | 16        | 890    | 3.8     | metal complex emitter | 18    |
| 830    | 3.1  | metal free emitter | 35        | 900    | 3.8     | metal complex emitter | 20    |
| 838    | 0.58 | metal free emitter | 19        | 920    | 1.9     | metal complex emitter | 22    |
| 840    | 1.12 | metal free emitter | 21        | 1005   | 0.2     | metal complex emitter | 20    |
| 840    | 3.8  | metal free emitter | 23        | 1060   | 0.022   | metal complex emitter | 24    |
| 850    | 0.14 | metal free emitter | 12        | 1060   | 0.3     | metal complex emitter | 25    |
| 852    | 0.3  | metal free emitter | 8         |        |         |                       |       |
| 864    | 0.2  | metal free emitter | 4         | 1      |         |                       |       |
| 868    | 0.09 | metal free emitter | 12        | 1      |         |                       |       |
| 870    | 0.02 | metal free emitter | 12        | 1      |         |                       |       |
| 883    | 0.1  | metal free emitter | 26        | 1      |         |                       |       |

Table S3. Summary of the device performances of NIR-OLEDs published to date with maximum electroluminescent (EL) wavelength over 800 nm.

| 890  | 0.015 | metal free emitter | 27 |
|------|-------|--------------------|----|
| 894  | 0.23  | metal free emitter | 8  |
| 895  | 0.091 | metal free emitter | 28 |
| 901  | 1.1   | metal free emitter | 29 |
| 904  | 0.019 | metal free emitter | 30 |
| 905  | 1.32  | metal free emitter | 31 |
| 916  | 0.07  | metal free emitter | 19 |
| 939  | 0.006 | metal free emitter | 28 |
| 960  | 0.009 | metal free emitter | 26 |
| 990  | 0.018 | metal free emitter | 28 |
| 1010 | 0.003 | metal free emitter | 32 |
| 1050 | 0.05  | metal free emitter | 33 |
| 1050 | 0.16  | metal free emitter | 34 |
| 1050 | 0.33  | metal free emitter | 34 |
| 1080 | 0.73  | metal free emitter | 34 |

## 6. References

- 1. Q. Peng, A. Obolda, M. Zhang and F. Li, *Angew. Chem. Int. Ed.*, 2015, 54, 7091-7095.
- M. T. Sharbati, F. Panahi, A. Shourvarzi, S. Khademi and F. Emami, *Optik*, 2013, 124, 52-54.
- F. Nisic, A. Colombo, C. Dragonetti, D. Roberto, A. Valore, J. M. Malicka, M. Cocchi,
   G. R. Freeman and J. A. G. Williams, *J. Mater. Chem. C*, 2014, 2, 1791-1800.
- 4. X. Du, J. Qi, Z. Zhang, D. Ma and Z. Y. Wang, *Chem. Mater.*, 2012, 24, 2178-2185.
- S. F. Wang, Y. Yuan, Y. C. Wei, W. H. Chan, L. W. Fu, B. K. Su, I. Y. Chen, K. J. Chou,
   P. T. Chen, H. F. Hsu, C. L. Ko, W. Y. Hung, C. S. Lee, P. T. Chou and Y. Chi, *Adv. Funct. Mater.*,2020, **30**, 2002173.
- Y. Yu, H. Xing, D. Liu, M. Zhao, H. H. Sung, I. D. Williams, J. W. Y. Lam, G. Xie, Z. Zhao and B. Z. Tang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202204279.
- Z. L. Zhu, S. F. Wang, L. W. Fu, J. H. Tan, C. Cao, Y. Yuan, S. M. Yiu, Y. X. Zhang, Y. Chi and C. S. Lee, *Chem. Eur. J.*, 2022, 28, e202103202.
- J.-F. Cheng, Z.-H. Pan, K. Zhang, Y. Zhao, C.-K. Wang, L. Ding, M.-K. Fung and J. Fan, *Chem. Eng. J.*, 2022, 430, 132744.
- T.-C. Lee, J.-Y. Hung, Y. Chi, Y.-M. Cheng, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang and C.-C.Wu, *Adv. Funct. Mater.*, 2009, 19, 2639-2647.

- Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze and J. Xue, *Appl. Phys. Lett.*, 2008, **93**, 163305.
- Y. Zhang, Z. Chen, X. Wang, J. He, J. Wu, H. Liu, J. Song, J. Qu, W. T. Chan and W. Y. Wong, *Inorg. Chem.*, 2018, 57, 14208-14217.
- G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, D. Ma, and Y. Wang, *J. Phys. Chem. C*, 2009, **113**, 1589–1595.
- 13. Y. Zhang, Q. Li, M. Cai, J. Xue and J. Qiao, J. Mater. Chem. C, 2020, 8, 8484-8492.
- X.-Q. Wang, Y. Hu, Y.-J. Yu, Q.-S. Tian, W.-S. Shen, W.-Y. Yang, Z.-Q. Jiang and L.-S. Liao, *J. Phys. Chem. Lett.*, 2021, **12**, 6034-6040.
- 15. L. Huang, C. D. Park, T. Fleetham and J. Li, *Appl. Phys. Lett.*, 2016, **109**. 233302.
- L. Tejerina, A. G. Rapidis, M. Rickhaus, P. Murto, Z. Genene, E. Wang, A. Minotto, H.
   L. Anderson and F. Cacialli, *J. Mater. Chem. C*, 2022, 10, 5929-5933.
- E. Rossi, A. Colombo, C. Dragonetti, D. Roberto, F. Demartin, M. Cocchi, P. Brulatti,
   V. Fattori and J. A. Williams, *Chem. Commun.*, 2012, 48, 3182-3184.
- J. R. Sommer, R. T. Farley, K. R. Graham, Y. Yang, J. R. Reynolds, J. Xue and K. S. Schanze, ACS Appl. Mater. Interfaces., 2009, 1, 274-278.
- Y. J. Yu, Y. Hu, S. Y. Yang, W. Luo, Y. Yuan, C. C. Peng, J. F. Liu, A. Khan, Z. Q. Jiang and L. S. Liao, *Angew. Chem. Int. Ed.*, 2020, **59**, 21578-21584.
- K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue and J. R. Reynolds, *Chem. Mater.*, 2011, 23, 5305-5312.
- A. Minotto, P. Murto, Z. Genene, A. Zampetti, G. Carnicella, W. Mammo, M. R. Andersson, E. Wang and F. Cacialli, *Adv. Mater*, 2018, 30, 1706584.
- 22. L. Cao, J. Li, Z.-Q. Zhu, L. Huang and J. Li, ACS Appl. Mater. Interfaces., 2021, 13, 60261-60268.
- A. Shahalizad, A. Malinge, L. Hu, G. Laflamme, L. Haeberlé, D. M. Myers, J. Mao, W.
   G. Skene and S. Kéna-Cohen, *Adv. Funct. Mater.*, 2021, **31**, 2007119.
- A. Shahalizad, A. D'Aléo, C. Andraud, M. H. Sazzad, D.-H. Kim, Y. Tsuchiya, J.-C. Ribierre, J.-M. Nunzi and C. Adachi, *Org. Electron.*, 2017, 44, 50-58.
- 25. Z.-Q. Chen, F. Ding, Z.-Q. Bian and C.-H. Huang, Org. Electron., 2010, 11, 369–376.
- 26. O. Fenwick, J. K. Sprafke, J. Binas, D. V. Kondratuk, F. Di Stasio, H. L. Anderson and 20

F. Cacialli, Nano. Lett., 2011, 11, 2451-2456.

- 27. Y. Xuan, G. Qian, Z. Wang and D. Ma, *Thin Solid Films*, 2008, **516**, 7891-7893.
- G. Tregnago, T. T. Steckler, O. Fenwick, M. R. Andersson and F. Cacialli, *J. Mater. Chem. C*, 2015, 3, 2792-2797.
- U. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aleo, V. Placide, M. Mamada, Y. Tsuchiya and C. Adachi, *Angew. Chem. Int. Ed.*, 2021, 60, 8477-8482.
- D. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington and H. Bronstein, *J. Am. Chem. Soc.*, 2019, 141, 18390-18394.
- M. T. Sharbati, F. Panahi and A. Gharavi, *IEEE Photon. Technol. Lett.*, 2010, 22, 1695-1697.
- 32. Q. Liang, J. Xu, J. Xue and J. Qiao, *Chem. Commun*, 2020, **56**, 8988-8991.
- G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma, and Z. Wang, *Chem. Mater.*, 2008, 20, 6208–6216.
- G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, Z. Y. Wang and D. Ma, *Adv. Mater.*, 2009, 21, 111-116.
- 35. J. Ding, S. Dong, M. Zhang and F. Li, J. Mater. Chem. C, 2022, 10, 14116-14121.