Enhanced birghtness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control

Walaa Mohammad^{a†}, K. David Wegner^{b†}, Clothilde Comby-Zerbino^c, Vanessa Trouillet^d, Marina Paris Ogayar^e, Jean-luc Coll^a, Riccardo Marin,^{f,g} Daniel Jaque Garcia^{e,f,g}, Ute Resch-Genger^b, Rodolphe Antoine^{c*}, Xavier Le Guével^{a*}

a. University of Grenoble Alpes, Institute for Advanced Biosciences, INSERM1209/CNRS-UMR5309- Grenoble-France

b. Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany

c. Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France

d. Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

e. Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Hospital Ramón y Cajal, Ctra. De Colmenar Viejo km 9.100, Madrid 28034, Spain

f. Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain

g. Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain

† : co-first authors

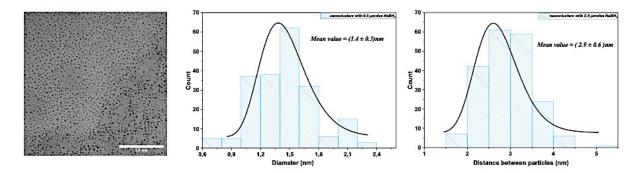


Figure S1. TEM micrograph of AuMHA/HDT prepared with 0.5 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

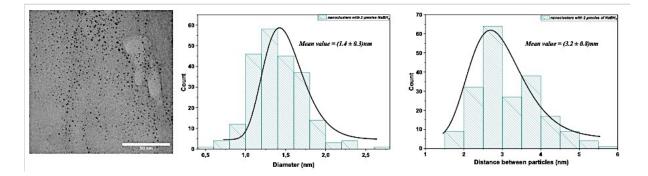


Figure S2. TEM micrograph of AuMHA/HDT prepared with 2 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

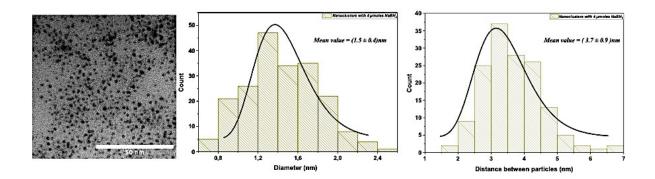


Figure S3. TEM micrograph of AuMHA/HDT prepared with 4 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

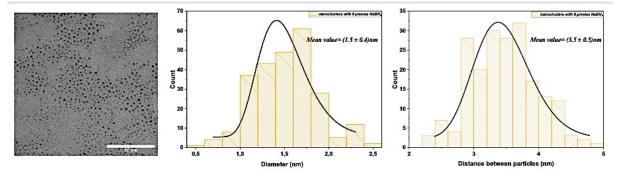


Figure S4. TEM micrograph of AuMHA/HDT prepared with 6 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

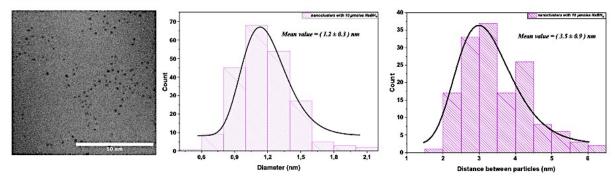


Figure S5. TEM micrograph of AuMHA/HDT prepared with 10 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

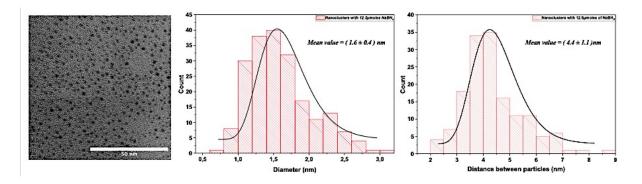


Figure S6. TEM micrograph of AuMHA/HDT prepared with 12.5 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

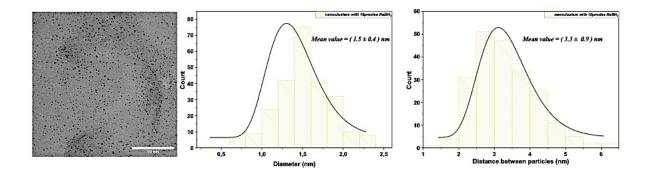


Figure S7. TEM micrograph of AuMHA/HDT prepared with 16 μ mol of NaBH₄ and distribution of core size and distance between particles. Distributions were estimated on 200 measurements.

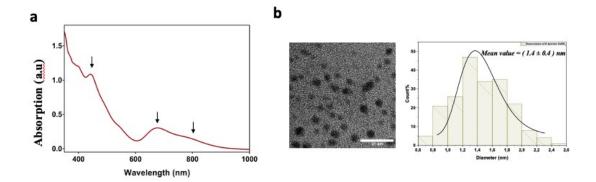


Figure S8. **a**. Absorbance spectra of AuMHA dispersed in water showing the specific bands at 420 nm, 670 nm and 780 nm. **b**. TEM micrograph of AuMHA and distribution of particle size. Distributions were estimated on 200 measurements.

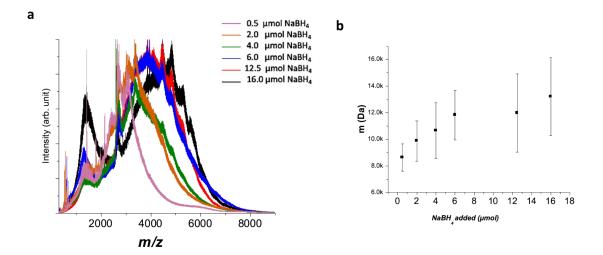


Figure S9. **a**. ESI-MS spectra of us-Au NPs samples as a function of NaBH₄ used during the synthesis. **b**. Estimation of average molecular weight of us-Au NPs, determined from the deconvolution of the broad envelope in the m/z spectra and assuming the same average charge state for all us-Au NPs (e.g. +3). The error bar corresponds the standard deviation.

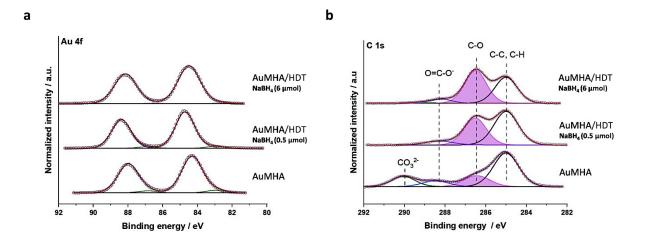


Figure S10. **a**. XPS spectra for gold Au4f. **b**. XPS spectra of C1s of AuMHA, AuMHA/HDT samples .

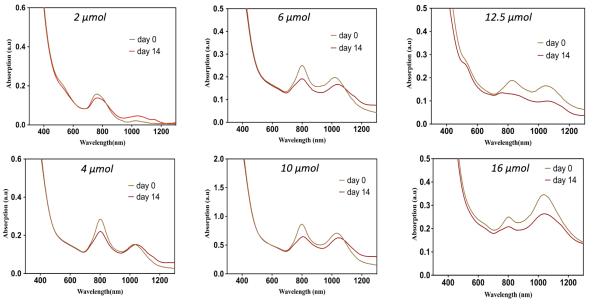


Figure S11. Absorbance spectra of AuMHA/HDT samples in PBS (pH 7.4) prepared with different amount of NaBH₄ at day 0 and day 14.

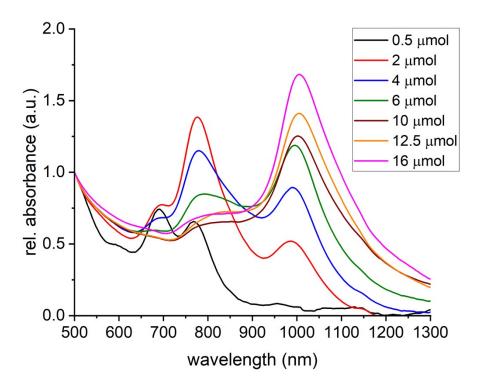


Figure S12. Absorbance spectra of AuMHA/HDT samples prepared with different amount of NaBH₄ and normalized at $\lambda_{exc.}$ 500 nm.

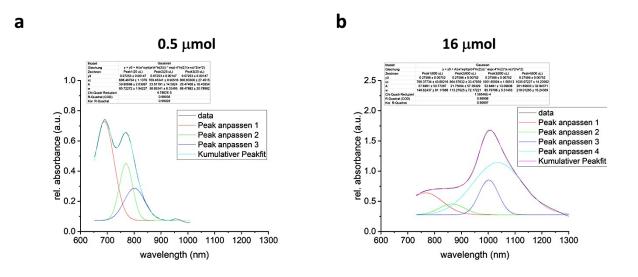


Figure S13. Deconvolution of the absorbance spectra normalized at $\lambda_{exc.}$ 500 nm of AuMHA/HDT samples prepared with 0.5 µmol (a) and 16 µmol (b) of NaBH₄.

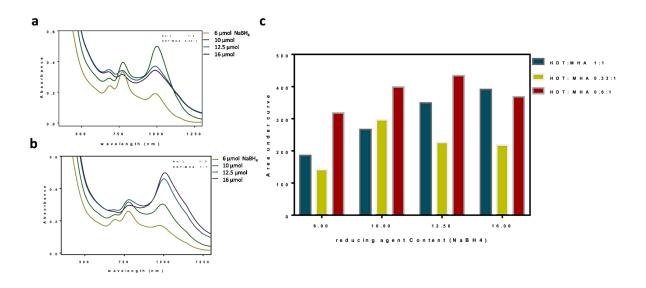


Figure S14. Absorbance spectra of AuMHA/HDT prepared at the ratio MHA:HDT = 0.33:1 (**a**) and 1:1 (**b**) as a function of NaBH₄ amount. (**c**) Area under the absorbance band at 990 nm at the different ratio AuMHA/HDT and controlling the amount of NaBH₄.

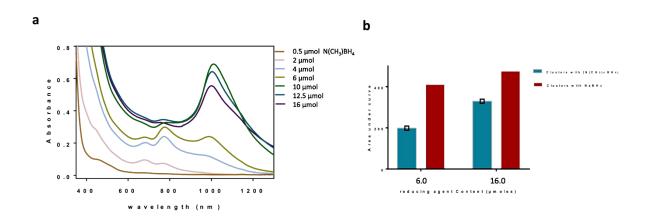


Figure S15. **a**. Absorbance spectra of AuMHA/HDT prepared with different amount of TMABH₄. **b**. Area under the absorbance band at 990 nm for AuMHA/HDT prepared using 6 or 16 μ mol of NaBH₄ or TMABH₄.

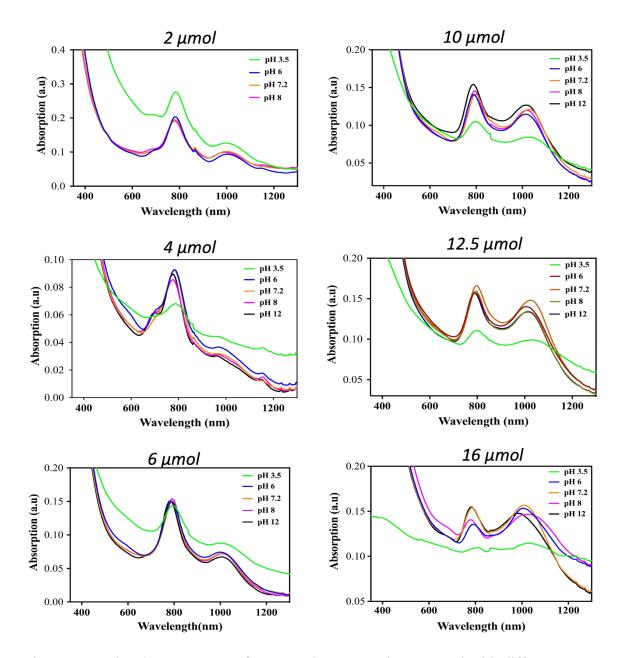


Figure S16. Absorbance spectra of AuMHA/HDT samples prepared with different amount of NaBH₄ and diluted in solutions at different pH.

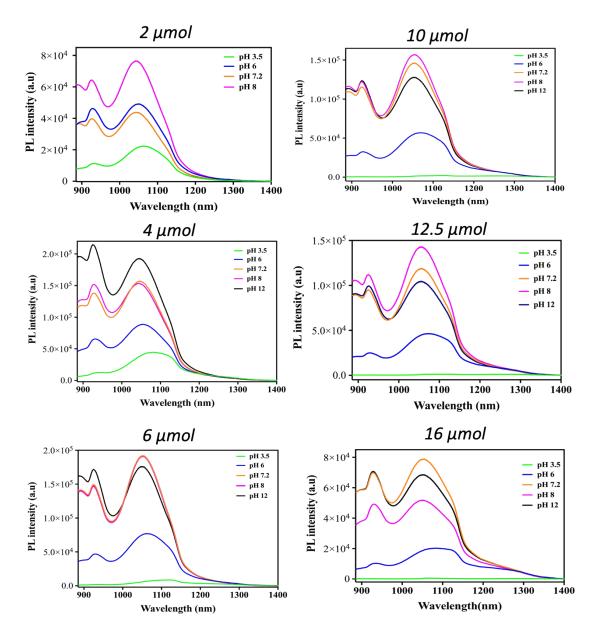


Figure S17. PL spectra ($\lambda_{exc.}$ 808 nm) of AuMHA/HDT samples prepared with different amount of NaBH₄ and diluted in solutions at different pH.

450.8 nm Excitation	$ au_1$ (ns)	A ₁ (%)	$ au_2(ns)$	A ₂ (%)	$ au_3$ (ns)	A ₃ (%)	R^2
S1 (2 µmol NaBH ₄)	1.057 ± 0.003	2.0	86.3 ± 0.5	16.9	729± 3	81.1	0.99674
S2 (6 µmol NaBH ₄)	1.0198 ± 0.0008	8.8	77.0± 0.5	23.9	523 ± 3	67.4	0.99957
S3 (16 μmol NaBH ₄)	0.8489 ± 0.0006	12.3	41.1 ± 0.2	30.6	250± 2	57.0	0.99975

b

634.3 nm Excitation	$ au_1(\mathbf{ns})$	A1(%)	$ au_2(\mathbf{ns})$	A ₂ (%)	$ au_3(\mathbf{ns})$	A ₃ (%)	R^2
S1 (2 µmol NaBH ₄)	0.782 ± 0.005	1.2	115.7 ± 1.7	17.8	680 ± 7	81.0	0.99279
S2 (6 µmol NaBH ₄)	0.784 ± 0.002	3.7	66.2 ± 0.5	22.6	459± 3	73.7	0.99864
S3 (16 μmol NaBH ₄)	0.750 ± 0.002	5.8	38.4 ± 0.3	30.3	230 ± 2	63.8	0.99875

Figure S18. a. PL lifetime components for AuMHA/HDT samples dispersed in PBS (pH 7.4) using 450.8 nm excitation (a) and 634.3 nm excitation (b). Lifetimes measured at 20 °C.