Electronic Supporting Information (ESI) for

The role of terminal coordinated amides in a series of Ca-tatb frameworks: pore size regulation and fluorescence sensing tunability

Bin Tan,^a Xiu-Ze Hei,^b Yang-Peng Lin,^c Zhao-Feng Wu,^{a,*} and Xiao-Ying Huang^{a,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China

^b Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan

District, Shenzhen 518055, China

^c Xiamen Institute of Environmental Science, Xiamen, 361021, China

Corresponding E-mail: zfwu@fjirsm.ac.cn; xyhuang@fjirsm.ac.cn

Figure S1 The crystal image of the as-made compound 1.

Figure S2 The crystal image of the as-made compound 2.

Figure S3 The crystal image of the as-made compound 3.

Figure S4 PXRD patterns of the as-made compounds 1, 2 and 3. Simulated PXRD pattern of compound 2 is included for comparison.

Figure S5 (a) The 1D chain-like SBU in compound **2** with the coordination environment of Ca^{2+} . (b) The 3D structure of compound **2** containing DMA solvents viewed along the *a* axis. (c) The channel environment in zoom in mode. The structure figures are depicted according to the single crystal data reported in *Inorg. Chim. Acta*, 2018, **478**, 8.

Figure S6 The channel structure of compound 2 that depicted by Material Studio.

Figure S7 TG curve for the as-made compounds 1, 2 and 3.

Figure S8 TG curve for compound 2 before and after solvent exchange.

Figure S9 The excitation and emission spectra of H₄tatb ligand at solid state measured at room temperature ($\lambda_{ex} = 410 \text{ nm}$ and $\lambda_{em} = 490 \text{ nm}$).

Figure S10 The excitation and emission spectra of compound 1 at solid state measured at room temperature ($\lambda_{ex} = 370$ nm and $\lambda_{em} = 480$ nm).

Figure S11 The excitation and emission spectra of compound 2 at solid state measured at room temperature ($\lambda_{ex} = 370 \text{ nm}$ and $\lambda_{em} = 480 \text{ nm}$).

Figure S12 The excitation and emission spectra of compound 3 at solid state measured at room temperature ($\lambda_{ex} = 370 \text{ nm}$ and $\lambda_{em} = 480 \text{ nm}$).

Figure S13 The FL spectra of compound 1 dispersed in solvents and nitrobenzene.

Figure S14 The FL spectra of compound 2 dispersed in solvents and nitrobenzene.

Figure S15 The FL spectra of compound 3 dispersed in solvents and nitrobenzene.

Figure S16 PXRD for the as-made compounds before and after being immersed in 10⁻³ M TNP.

Figure S17 The IR for the as-made compounds before and after being immersed in 10⁻³ M TNP.

Compounds	$K_{\rm sv}$ / ${ m M}^{-1}$	Reference
Tb(L)(OH)	7.73 × 10 ⁻²	S1
Eu(BTB)H ₂ O	6.76 × 10 ⁻²	- S2
Tb(BTB)H ₂ O	3.25 × 10 ⁻²	
Cd(NDC) _{0.5} (PCA)	3.5×10^{4}	S3
[(CH ₃)2NH ₂] ₃ [Zn ₄ Na(BPTC) ₃]·4CH ₃ OH·2DMF	3.2×10^{4}	S4
$[Zn(NDC)(H_2O)]_n$	6×10^4	- \$5
$[Cd(NDC)(H_2O)]_n$	$2.385 imes 10^4$	
${[Tb(L)_{1.5}(H_2O)]\cdot 3H_2O}_n$	7.47×10^{4}	S6
$Zr_6O_4(OH)_6(L)_6$	$2.9 imes 10^4$	S7
$Eu_3(L)_3(HCOO)(\mu_3-OH)_2(H_2O)$	2.1×10^{4}	S8
$Zn_8(ad)_4(BPDC)_6O\cdot 2Me_2NH_2$	$4.6 imes 10^4$	S9
$Zr_6O_4(OH)_6(L)_6$	$5.8 imes 10^4$	S10
[Cd(NDC)L] ₂ ·H ₂ O	3.7×10^{4}	S11
$Zn_4(DMF)(Ur)_2(NDC)_4$	10.83×10^4	S12
$[{Zn(BINDI)_{0.5}(bpa)_{0.5}(H_2O)}.4H_2O]_n(MOF1)$	$4.9 imes 10^4$	- S13
$[\{Zn(BINDI)_{0.5}(bpe)\}\cdot 3H_2O]_n (MOF2)$	1.29×10^{4}	
Cu-CIP	$1.07 imes 10^4$	S14
$\{Mn(Tipp)(A)_2\}_n \cdot 2H_2O$	11.8×10^{4}	S15
{ $(Me_2NH_2)_4[Eu_4(DDAC)_3(HCO_2)(OH_2)_2] \cdot 8DMF \cdot 9H_2O$ } _n	$8.6 imes 10^4$	S16
$[Zn_3(TIAB)_2(IMDC)_2] \cdot (NO_3)_2 \cdot (DMF)_2 \cdot (H_2O)_2$	5.68×10^{4}	S17
[Zn(bipa)(suc)] _n	6.48×10^{4}	S18

Table S1 Selected MOF FL sensors towards TNP.

References:

- S1. J. Qin, B. Ma, X.-F. Liu, H.-L. Lu, X.-Y. Dong, S.-Q. Zang and H. Hou, J. Mater. Chem. A, 2015, 3, 12690.
- S2. J.-H. QIn, B. Ma, X.-F. Liu, H.-L. Lu, X.-Y. Dong, S.-Q. Zang and H. Hou, *Dalton Trans.*, 2015, 44, 14594.
- S3. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, Angew. Chem. Int. Ed., 2013, 52, 2881.
- S4. E.-L. Zhou, P. Huang, C. Qin, K.-Z. Shao and Z.-M. Su, J. Mater. Chem. A, 2015, 3, 7224.
- S5. P. Ghosh, S. K. Saha, A. Roychowdhury and P. Banerjee, Eur. J. Inorg. Chem., 2015, 2851.
- S6. L.-H. Cao, F. Shi, W.-M. Zhang, S.-Q. Zang and T. C. W. Mak, *Chem. Eur. J.*, 2015, 21, 15705.
- S7. S. S. Nagarkar, A. V. Desai and S. K. Ghosh, Chem. Commun., 2014, 50, 8915.
- S8. X.-Z. Song, S.-Y. Song, S.-N. Zhao, Z.-M. Hao, M. Zhu, X. Meng, L.-L. Wu and H.-J. Zhang, Adv. Funct. Mater., 2014, 24, 4034.
- S9. B. Joarder, A. V. Desai, P. Samanta, S. Mukherjee and S. K. Ghosh, *Chem. Eur. J.*, 2015, 21, 965.
- S10. S. S. Nagarkar, A. V. Desai, P. Samanta and S. K. Ghosh, Dalton Trans., 2015, 44, 15175.
- S11. B.-Q. Song, C. Qin, Y.-T. Zhang, X.-S. Wu, L. Yang, K.-Z. Shao and Z.-M. Su, *Dalton Trans.*, 2015, 44, 18386
- S12. S. Mukherjee, A. V. Desai, B. Manna, A. I. Inamdar and S. K. Ghosh, Cryst. Growth. Des., 2015, 15, 4627.
- S13. S. S. Dhankhar, N. Sharma and C. M. Nagaraja, Inorg. Chem. Front., 2019, 6, 1058.
- S14. M. Kaur, M. Yusuf and A. K. Malik, J. Fluores., 2021, 31, 1959.
- S15. Y. Zou, K. Huang, X. Zhang, D. Qin and B. Zhao, Inorg. Chem., 2021, 60, 11222.
- S16. H. Chen, Z. Zhang, T. Hu and X. Zhang, *Inorg. Chem. Front.*, 2021, 8, 4376.
- S17. Y. Liu, Y. Wang, Y. Zhang, P. G. Karmaker, L. Zhang, F. Huo, X. Yang and B. Zhao, *Dyes and Pigments*, 2022, **199**, 110099.
- S18. S.-S. Ge, Y.-H. Zhang, X.-Q. Yang and X.-G. Mu, Transition Metal Chem., 2023, 48, 37.

Figure S18 The SEM photographs for the as-made compound 2 before (up) and after (down) immersing treatment in 10^{-3} M TNP.

Figure S19 The time-dependent absorption spectra for compounds 1 (a) and 3 (b) that dispersed in 0.5×10^{-4} M TNP.