# **ELECTRONIC SUPPORTING INFORMATION**

# A Comprehensive Study about the Effect of Molecular Chain Flexibility on the Performance of Low-temperature Curable Polyimide

Shan Huang<sup>§</sup>[a, b], Yao Zhang<sup>§</sup>[a], Xingwang Lai[a], Xialei Lv\*[a], Jinhui Li\*[a], Siyao Qiu[a], Guoping Zhang\*[a], and Rong Sun[a]

[a] Shenzhen International Innovation Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

[b] Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.

§ These authors contribute equally to this work.

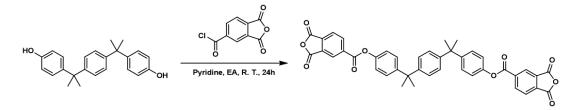
E-mail: xl.lv@siat.ac.cn, jh.li@siat.ac.cn and gp.zhang@siat.ac.cn

## **Table of Contents**

- I. Materials.
- II. Characterization method.
- III. Synthesis of monomers.
- IV. Additional characterizations of the structure of PI films.
- V. Additional thermal properties, mechanical properties and linearly polarized IR spectroscopy of PI films.
- VI. Additional DSC curves of PI films.
- VII. Additional hydrophobicity and optical properties of PI films.
- VIII. Additional detailed data of PI fims.

#### I. Materials

1,4-Bis(4-hydroxy-α,α-dimethylbenzyl)benzene (98%), 1,3-benzofurandione-5carbonyl chloride (98%), pyridine (99.5%, water  $\leq$  50 ppm), ethyl acetate (EA, 99.8%, water  $\leq$  50 ppm) and N-Methyl-2-pyrrolidone (NMP, 99.5%, water  $\leq$  50 ppm) were provided by Energy Chemical Co., Ltd. p-phenylenediamine (p-PDA, 97%) were purchased from Aladdin Industrial Corporation. 2,2-Bis(4-aminophenyl)propane (IPDA, 98%) and 4,4'-[p-phenylenebis(propane-2,2-diyl)]bisaniline (BIPDA, 99%) were received from Shanghai Bidepharm Co., Ltd. p-phenylenebis(trimellitate anhydride) (TAHQ, 99.8%) and 5-isobenzofurancarboxylic acid (BPEDA, 99.8%) was obtained from ChinaTech Chemical Co., Ltd. Dimethyl sulfoxide- $d_6$ , (DMSO- $d_6$ , with 0.03% tetramethylsilane) was obtained from Shanghai Acmec Bi°Chemical Co., Ltd. Tetrahydrofuran (THF, 99%), N,N-Dimethylformamide (DMF, 99%), dimethyl sulfoxide, (DMSO, 99%) and N,N-Dimethylacetamide, (DMAc, 99%) were received from Shanghai Lingfeng Chemical Reagent Co., Ltd. All the anhydrides were dried in a 120 °C vacuum oven for 6 hours, and all other materials were used as received without extra treatments.


#### **II.** Characterization method

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE III 400 MHz spectrometer instruments and the compounds (about 20 mg) were dissolved in 600  $\mu$ L DMSO-*d*<sub>6</sub> by using residual tetramethylsilane ( $\delta$ H = 0.00 ppm) as internal references. The high-performance liquid chromatography (HPLC) was obtained by Ultimate 3000 to estimate the purity of TABPP. Fourier transforminfrared spectra (FT-IR) were detected from the Bruker Vertex 70 spectrometer with a scan range of 4000-600 cm<sup>-1</sup> by using the room temperature attenuated total reflection (ATR) testing mode. In-plane orientation of PI films was analyzed by polarized ATR FTIR spectra with the data recorded by a PerkinElmer Frontier Fourier transform spectrometer, and a series of spectra were recorded by every 15° with the polarized angle varied from 0° to 180°. The molecular weight of poly-amide acids (PAAs) and their polydispersity was measured by gel permeation chromatography (GPC, Waters Alliance e2695) by using DMF as an eluent at a flow rate of 1.0 mL/min at room temperature. The number average molecular weight (M<sub>n</sub>) and weight average molecular weight (M<sub>w</sub>) were calibrated by the standard curve of polystyrene. The ultraviolet visible (UV-vis) spectra was obtained on a UV-3600 from SHIMADZU (Japan) UV-VIS-NIR spectrophotometer, and the PI film was tightly attached to a 5×5 cm transparent and colorless glass plate. The dielectric constant and dissipation factor of the cured samples at a high frequency of 10 GHz were estimated on the E5071C keysight ENA vector network analyzer at room temperature. The mechanical properties of PI films were characterized by a dynamic mechanical analyzer (DMA Q850, TA Instruments, America) with a procedure of ranging from 1 N to 18 N (2 N/min) at room temperature. Thermomechanical analysis (TMA) was performed with a heating rate of 5 °C/min ranging from 25 °C to 400 °C in nitrogen on the TMA-SDTA2+ (Mettler, Switzerland) instrument. The glass transition temperature  $(T_g)$  was detected by DSC 2500 (TA Instruments, America) with a heating rate of 20 °C/min from 30 °C to 350 °C in a nitrogen atmosphere. Thermo-gravimetric analysis (TGA) was performed in the nitrogen atmosphere on a TA SDT Q600 (America) apparatus at a heating rate of 10 °C/min from room temperature to 800 °C. Wide-angle X-ray diffraction (WAXD) was performed on a D8 Advance diffractometer radiated by the CuKa of 0.15418 nm wavelength (Bruker, Germany) with a  $2\theta$  ranging from 10° to 70°. The obtaining  $d_{\text{spacing}}$  values were based on the Bragg's law:  $2d \times \sin \theta = n\lambda$ . Water contact angel (WCA) was characterized by the Dataphysics-°CA20 with the deionized water. The water absorption was obtained by weighing the mass change before and after 200 mg of dried PI films immersed in deionized water for 24 h. The water absorption of PIs was calculated by the formula: Water absorption (WA) =  $(W_{\rm b} - W_{\rm a})/W_{\rm a} \times 100\%$ , where  $W_{\rm a}$  was the mass before immersion and  $W_{\rm b}$  after immersion. The solubility of the synthesized PIs was tested with 5 mg PI film in 8 mL solvent at room temperature for 24 h. If it did not dissolve after 24 h, the film was heated to 60 °C for an additional 24 h to observe the phenomenon.

#### **III. Synthesis of monomers**

Synthesis of (1,4-phenylenebis(propane-2,2-diyl))bis(4,1-phenylene) bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (TABPP)

Under an atmosphere of nitrogen, 1,3-benzofurandione-5-carbonyl chloride (5.00 g, 23.75 mmol) was added to a 100 mL three-necked flask with 20 mL EA. The flask was sealed and kept at 0 °C with magnetic stirring until the solid was completely dissolved. Then a solution of pyridine (5.4 mL) was added to the resulting reaction mixture with 1,4-bis(4-hydroxy- $\alpha$ , $\alpha$ -dimethylbenzyl)benzene (3.92 g, 11.31 mmol) at 0 °C under an atmosphere of dry N2. Subsequently, the reaction mixture was stirred at 0 °C for 5 h. After the end of the reaction, the reaction mixture was filtered with a Brinell funnel and the white solid was collected in a 100 mL flask. To purify the obtained crude product, 20 mL of acetic acid was added to the flask, and the temperature was raised to 80 °C within a nitrogen atmosphere. Once the white solid had been completely dissolved, the reaction mixture underwent a gradual cooling process to attain room temperature. After the white solid was precipitated, the white solid was filtered and dried in vacuum at 120 °C for 6 h, the product was obtained as a dried white powder with a yield of 55%. The structure of TABPP was confirmed by the nuclear magnetic resonance (NMR) as described in the supporting information (see Fig. S1 and Fig. S2). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 8.71 - 8.46 (m, 4H), 8.27 (d, J = 7.9 Hz, 2H), 7.35 - 7.17 (m, 12H), 1.67 (s, 12H), <sup>13</sup>C NMR (100 MHz, DMSO*d*<sub>6</sub>) δ 163.39, 162.97, 162.86, 148.86, 148.58, 147.67, 137.41, 136.28, 135.83, 132.60, 128.15, 128.12, 126.64, 126.36, 126.19, 121.69, 121.60, 42.37, 30.85.



Scheme S1 Synthesis of TABPP.

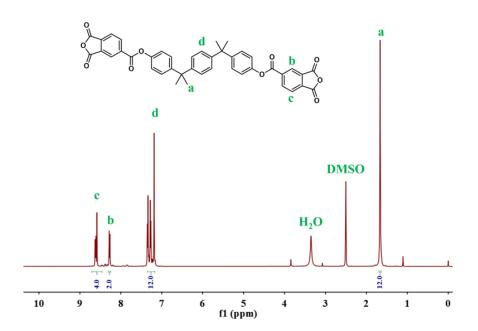



Fig. S1 <sup>1</sup>H NMR spectrum of TABPP in DMSO-*d6*.

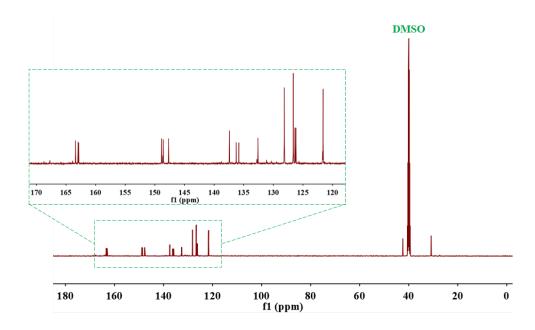
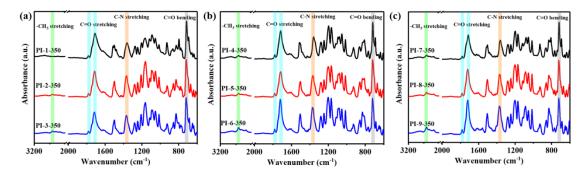




Fig. S2 <sup>13</sup>C NMR spectrum of TABPP in DMSO-*d6*.



#### IV. Additional characterizations of the structure of PI film

**Fig. S3** FT-IR spectra of (a) PI films with anhydride TAHQ cured at 350 °C, (b) PI films with anhydride BPEDA cured at 350 °C and (c) PI films with anhydride TABPP cured at 350 °C.

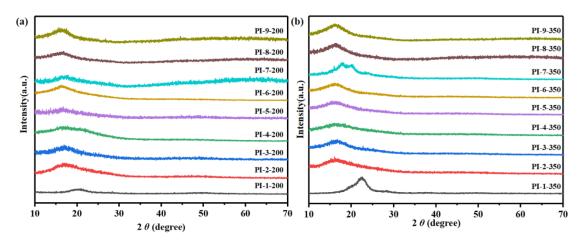
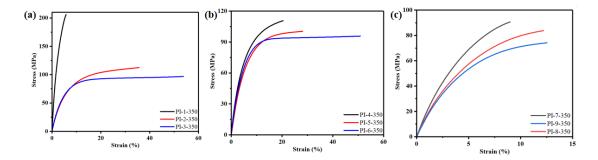
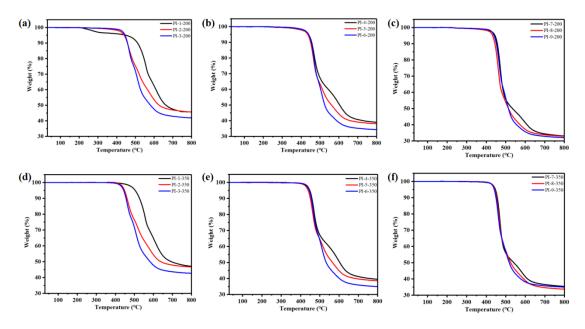
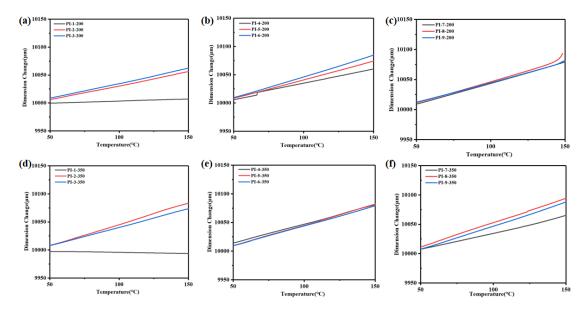
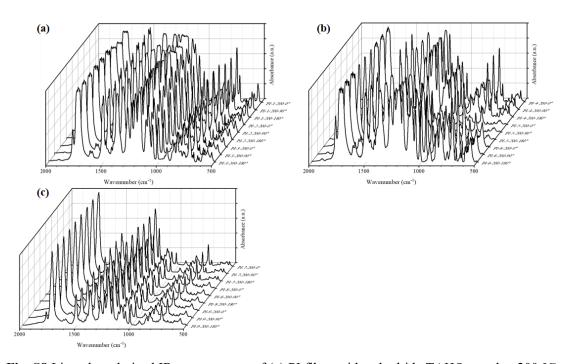




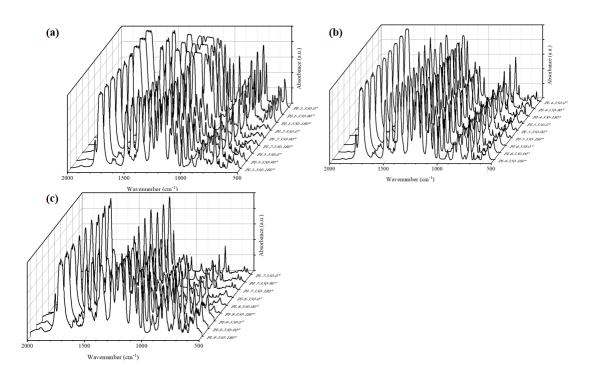

Fig. S4 XRD patterns of (a) PI films cured at 200 °C and (b) PI films cured at 350 °C.


# V. Additional thermal properties, mechanical properties and linearly polarized IR spectroscopy of PI films



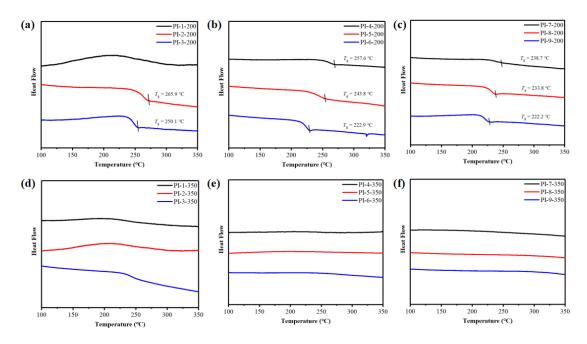

**Fig. S5** Typical stress-strain curves of (a) PI films with anhydride TAHQ cured at 350 °C, (b) PI films with anhydride BPEDA cured at 350 °C and (c) PI films with anhydride TABPP cured at 350 °C.



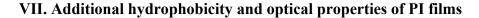

**Fig. S6** TGA curves of (a) PI films with anhydride TAHQ cured at 200 °C, (b) PI films with anhydride BPEDA cured at 200 °C, (c) PI films with anhydride TABPP cured at 200 °C, (d) PI films with anhydride TAHQ cured at 350 °C, (e) PI films with anhydride BPEDA cured at 350 °C and (f) PI films with anhydride TABPP cured at 350 °C.



**Fig. S7** TMA curves of (a) PI films with anhydride TAHQ cured at 200 °C, (b) PI films with anhydride BPEDA cured at 200 °C, (c) PI films with anhydride TABPP cured at 200 °C, (d) PI films with anhydride TAHQ cured at 350 °C, (e) PI films with anhydride BPEDA cured at 350 °C and (f) PI films with anhydride TABPP cured at 350 °C.




**Fig. S8** Linearly polarized IR spectroscopy of (a) PI films with anhydride TAHQ cured at 200 °C, (b) PI films with anhydride BPEDA cured at 200 °C and (c) PI films with anhydride TABPP cured at 200 °C.




**Fig. S9** Linearly polarized IR spectroscopy of (a) PI films with anhydride TAHQ cured at 350 °C, (b) PI films with anhydride BPEDA cured at 350 °C and (c) PI films with anhydride TABPP cured at 350 °C.

### VI. Additional DSC curves of PI films



**Fig. S10** DSC curves of (a) PI films with anhydride TAHQ cured at 200 °C, (b) PI films with anhydride BPEDA cured at 200 °C, (c) PI films with anhydride TABPP cured at 200 °C, (d) PI films with anhydride TAHQ cured at 350 °C, (e) PI films with anhydride BPEDA cured at 350 °C and (f) PI films with anhydride TABPP cured at 350 °C.



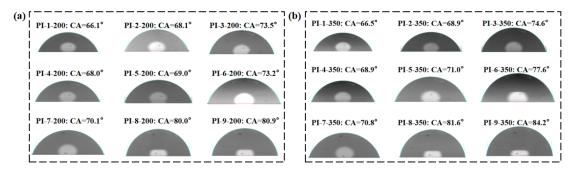
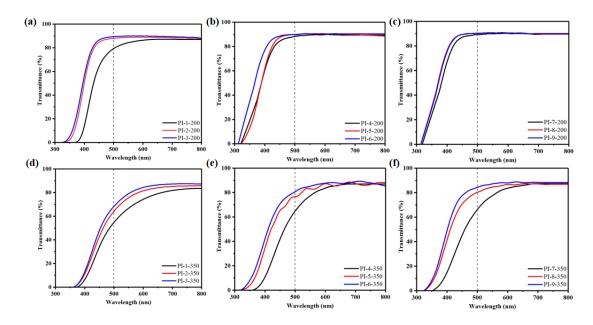




Fig. S11 Water contact angle of (a) PI films cured at 200 °C and (b) PI films cured at 350 °C.



**Fig. S12** UV-visible spectra of (a) PI films with anhydride TAHQ cured at 200 °C, (b) PI films with anhydride BPEDA cured at 200 °C, (c) PI films with anhydride TABPP cured at 200 °C, (d) PI films with anhydride TAHQ cured at 350 °C, (e) PI films with anhydride BPEDA cured at 350 °C, (e) PI films with anhydride BPEDA cured at 350 °C.

## VIII. Additional detailed data of PI fims

| Sample name | L <sub>end-to-end</sub> | Lo    | $L_{\rm end-to-end}/L_{\rm o}$ |
|-------------|-------------------------|-------|--------------------------------|
| PI-1        | 2.49 E+01               | 25.49 | 9.76 E-01                      |
| PI-2        | 2.96 E+01               | 31.41 | 9.42 E-01                      |
| PI-3        | 3.07 E+01               | 37.32 | 8.22 E-01                      |
| PI-4        | 2.75 E+01               | 31.44 | 8.75 E-01                      |
| PI-5        | 2.88 E+01               | 36.91 | 7.80 E-01                      |
| PI-6        | 2.96 E+01               | 42.91 | 6.90 E-01                      |
| PI-7        | 3.24 E+01               | 37.32 | 8.68 E-01                      |
| PI-8        | 3.29 E+01               | 43.24 | 7.61 E-01                      |
| PI-9        | 3.30 E+01               | 49.74 | 6.64 E-01                      |

Table S1 The end-to-end distance and total chain length values of the PI segment simulated

 Table S2 The HOMO/LUMO values of diamine and anhydride monomers

| Monomer name | Monomer type | LUMO      | НОМО      |  |
|--------------|--------------|-----------|-----------|--|
| PDA          | diamine      | - 0.03 eV | - 4.52 eV |  |
| IPDA         | diamine      | - 0.27 eV | - 5.34 eV |  |
| BIPDA        | diamine      | - 0.31 eV | - 5.47 eV |  |
| TAHQ         | anhydride    | - 3.44 eV | - 7.48 eV |  |
| BPEDA        | anhydride    | - 3.34 eV | - 6.97 eV |  |
| TABPP        | anhydride    | - 3.31 eV | - 6.65 eV |  |

Table S3 Molecular weight of the resulting PAA solutions

| Sample Name | Mn (Da) | Mw (Da) | Polydispersity |
|-------------|---------|---------|----------------|
| PAA-1       | 83777   | 151637  | 1.81           |
| PAA-2       | 69433   | 125674  | 1.81           |
| PAA-3       | 67794   | 127454  | 1.88           |
| PAA-4       | 76719   | 137328  | 1.79           |
| PAA-5       | 45902   | 84920   | 1.85           |
| PAA-6       | 44458   | 82692   | 1.86           |
| PAA-7       | 53281   | 97506   | 1.83           |
| PAA-8       | 45371   | 84844   | 1.87           |
| PAA-9       | 38159   | 71359   | 1.87           |

| Sample<br>Name | <i>d</i> -spacing<br>(Å) | CTE<br>(ppm/K) | Dichroic<br>ratio | Dianhydride | Diamine |
|----------------|--------------------------|----------------|-------------------|-------------|---------|
| PI-1-350       | 3.93                     | -3.40          | 2.114             | TAHQ        | PDA     |
| PI-2-350       | 5.36                     | 73.26          | 2.026             | TAHQ        | IPDA    |
| PI-3-350       | 5.24                     | 65.68          | 2.043             | TAHQ        | BIPDA   |
| PI-4-350       | 4.99                     | 63.42          | 2.046             | BPEDA       | PDA     |
| PI-5-350       | 5.29                     | 69.93          | 2.037             | BPEDA       | IPDA    |
| PI-6-350       | 5.40                     | 70.12          | 2.035             | BPEDA       | BIPDA   |
| PI-7-350       | 4.94                     | 59.53          | 2.055             | TABPP       | PDA     |
| PI-8-350       | 5.28                     | 84.77          | 2.017             | TABPP       | IPDA    |
| PI-9-350       | 5.53                     | 81.56          | 2.020             | TABPP       | BIPDA   |

Table S4 Detailed data *d*-spacing, CTE and dichroic ratio of the resulting PI films cured at 350 °C

Table S5 Mechanical and thermal properties of the resulting PI films cured at 350 °C

| Course la      | Mec              | hanical proj   | perties |                          | Thermal <b>j</b>          | properties                |                  |
|----------------|------------------|----------------|---------|--------------------------|---------------------------|---------------------------|------------------|
| Sample<br>Name | σ <sub>max</sub> | ε <sub>b</sub> | Ε       | <i>T</i> <sub>d,5%</sub> | <i>T</i> <sub>d,10%</sub> | <i>T</i> <sub>d,30%</sub> | T <sub>HRI</sub> |
| Ivanie         | [MPa]            | [%]            | [GPa]   | [°C]                     | [°C]                      | [°C]                      | [°C]             |
| PI-1-350       | 206              | 5.7            | 8.66    | 504                      | 526                       | 578                       | 269              |
| PI-2-350       | 113              | 35.6           | 2.30    | 448                      | 461                       | 522                       | 241              |
| PI-3-350       | 97               | 53.8           | 2.36    | 444                      | 456                       | 503                       | 235              |
| PI-4-350       | 111              | 20.4           | 2.54    | 448                      | 459                       | 490                       | 232              |
| PI-5-350       | 100              | 28.1           | 2.16    | 440                      | 450                       | 480                       | 227              |
| PI-6-350       | 96               | 50.8           | 2.18    | 445                      | 456                       | 484                       | 230              |
| PI-7-350       | 91               | 9.0            | 2.28    | 447                      | 456                       | 475                       | 227              |
| PI-8-350       | 84               | 12.2           | 1.89    | 444                      | 453                       | 473                       | 226              |
| PI-9-350       | 74               | 12.5           | 1.70    | 441                      | 450                       | 471                       | 224              |

 $T_{\rm HRI} = 0.49 \times [T_{\rm d,5\%} + 0.6 \times (T_{\rm d,30\%} - T_{\rm d,5\%})]; T_{\rm d,5\%}, T_{\rm d,10\%}$  and  $T_{\rm d,30\%}$  were the corresponding decomposition

temperature of 5%, 10% and 30% weight loss, respectively.

| Sample name | Tg <sup>a</sup> | Tg <sup>b</sup> |
|-------------|-----------------|-----------------|
| PI-1-350    | -               | 361.4           |
| PI-2-350    | -               | 282.3           |
| PI-3-350    | -               | 254.2           |
| PI-4-350    | -               | 279.5           |
| PI-5-350    | -               | 275.2           |
| PI-6-350    | -               | 252.6           |
| PI-7-350    | -               | 253.1           |
| PI-8-350    | -               | 250.5           |
| PI-9-350    | -               | 239.8           |
| PI-1-200    | -               | -               |
| PI-2-200    | 265.9           | 254.1           |
| PI-3-200    | 250.1           | 234.1           |
| PI-4-200    | 257.6           | 246.8           |
| PI-5-200    | 243.8           | -               |
| PI-6-200    | 222.9           | 233.0           |
| PI-7-200    | 238.7           | -               |
| PI-8-200    | 233.8           | -               |
| PI-9-200    | 222.2           | -               |

Table S6 The glass transition temperature of the resulting PI films

a: The  $T_{\rm g}$  was measured by DSC, b: The  $T_{\rm g}$  was measured by TMA.

Table S7 Dielectric properties, hydrophilicities and transmittance of synthesized PIs.

|             | Dielectric     | Dielectric properties <sup>a</sup>         |      | ophilicity |                                |  |
|-------------|----------------|--------------------------------------------|------|------------|--------------------------------|--|
| Sample Name | $\mathbf{D}_k$ | <b>D</b> <sub>f</sub> (×10 <sup>-3</sup> ) | WA   |            | Transmittance <sup>b</sup> (%) |  |
|             |                |                                            | (%)  | WCA (°)    |                                |  |
| PI-1-350    | 3.47           | 4.67                                       | 1.21 | 66.5       | 54.7                           |  |
| PI-2-350    | 2.94           | 7.57                                       | 1.14 | 68.9       | 64.2                           |  |
| PI-3-350    | 2.83           | 8.40                                       | 1.01 | 74.6       | 68.4                           |  |
| PI-4-350    | 2.92           | 7.10                                       | 0.98 | 68.9       | 64.8                           |  |
| PI-5-350    | 2.86           | 6.81                                       | 0.96 | 71.0       | 76.6                           |  |
| PI-6-350    | 2.67           | 4.53                                       | 0.87 | 77.6       | 80.7                           |  |
| PI-7-350    | 2.82           | 6.40                                       | 0.85 | 70.8       | 66.2                           |  |
| PI-8-350    | 2.73           | 5.69                                       | 0.73 | 81.6       | 80.3                           |  |
| PI-9-350    | 2.68           | 6.78                                       | 0.69 | 84.2       | 84.3                           |  |

a: 10 GHz at room temperature; b: Transmittance at 500 nm.

| Samples  | NMP | DMF | DMAc | DMSO | THF |
|----------|-----|-----|------|------|-----|
| PI-1-200 | +   | +   | _    | +    | +   |
| PI-2-200 | +   | +   | +    | +    | +   |
| PI-3-200 | ++  | ++  | +    | +    | ++  |
| PI-4-200 | +   | +   | +    | +    | +   |
| PI-5-200 | ++  | ++  | +    | ++   | ++  |
| PI-6-200 | ++  | ++  | +    | ++   | ++  |
| PI-7-200 | ++  | ++  | +    | +    | ++  |
| PI-8-200 | ++  | ++  | +    | ++   | ++  |
| PI-9-200 | ++  | ++  | ++   | ++   | ++  |
| PI-1-350 | -   | -   | -    | -    | -   |
| PI-2-350 | +   | -   | -    | -    | -   |
| PI-3-350 | +   | +   | -    | -    | -   |
| PI-4-350 | +   | -   | -    | -    | -   |
| PI-5-350 | +   | +   | -    | _    | -   |
| PI-6-350 | +   | +   | -    | +    | +   |
| PI-7-350 | +   | +   | -    | -    | -   |
| PI-8-350 | +   | +   | -    | +    | +   |
| PI-9-350 | +   | +   | +    | +    | +   |

Table S8 Solubility results of the PI films.

++: Soluble at R.T. for 24 h; +: soluble at 60 °C for 24 h; -: insoluble at 60 °C for 24 h.