Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

New pentlandite-like oxide semiconductors IrIn₆XYO₈ (*X*=Ga, In; *Y*=Ge, Sn, Ti) as potential candidates for photocatalytic water splitting under visible-light irradiation

Xiaohui Yang,^{b,#} Dan Liu,^{c,#} Shiyu Lu,^a Siyu Xiang,^a Han Zhang,^a Qian Yang,^a Yongjiang Di,^a Yilong Ma,^a Rong Wang,^{a,*}

^a School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, People's Republic of China

^b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China

^c Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin 150040, People's Republic of China

*Corresponding author: rongwang@cqust.edu.cn

[#] The authors contributed equally to this work.

Table of Contents

1. Phonon dispersion curves of $IrIn_6XYO_8$ ($X = Ga$, In; $Y = Ge$, Sn, Ti)
2. Variation of energy and temperature against time for the AIMD simulation of IrIn ₆ GaGeO ₈ 6
3. Variation of energy and temperature against time for the AIMD simulation of IrIn ₆ GaSnO ₈ 7
4. Variation of energy and temperature against time for the AIMD simulation of IrIn ₆ GaTiO ₈ 8
5. Variation of energy and temperature against time for the AIMD simulation of IrIn ₆ InGeO ₈ 9
6. Variation of energy and temperature against time for the AIMD simulation of $IrIn_6InSnO_810$
7. Variation of energy and temperature against time for the AIMD simulation of $IrIn_6InTiO_811$
8. Fatband Structures of IrIn ₆ GaGeO ₈
9. Fatband Structures of IrIn ₆ GaSnO ₈ 13
10. Fatband Structures of IrIn ₆ GaTiO ₈ 14
11. Fatband Structures of IrIn ₆ InGeO ₈ 15
12. Fatband Structures of IrIn ₆ InSnO ₈ 16
13. Fatband Structures of $IrIn_6InTiO_8$ 17
14. DOS of IrIn ₆ <i>XY</i> O ₈ (<i>X</i> =Ga, In; <i>Y</i> =Ge, Sn, Ti)
15. Partial DOS of IrIn ₆ GaGeO ₈ 19
16. Partial DOS of IrIn ₆ GaSnO ₈ 20
17. Partial DOS of IrIn ₆ GaTiO ₈
18. Partial DOS of IrIn ₆ InGeO ₈ 22
19. Partial DOS of IrIn ₆ InSnO ₈ 23
20. Partial DOS of IrIn ₆ InTiO ₈
21. 1D ELF profile and 2D ELF isosurface for IrIn ₆ GaGeO ₈ 25

22. 1D ELF profile and 2D ELF isosurface for IrIn ₆ GaSnO ₈	26
23. 1D ELF profile and 2D ELF isosurface for IrIn ₆ GaTiO ₈	27
24. 1D ELF profile and 2D ELF isosurface for IrIn ₆ InGeO ₈	28
25. 1D ELF profile and 2D ELF isosurface for IrIn ₆ InSnO ₈	29
26. 1D ELF profile and 2D ELF isosurface for IrIn ₆ InTiO ₈	30
27. pCOHP and pCOBI of IrIn ₆ GaGeO ₈	31
28. pCOHP and pCOBI of IrIn ₆ GaSnO ₈	32
29. pCOHP and pCOBI of IrIn ₆ GaTiO ₈	33
30. pCOHP and pCOBI of IrIn ₆ InGeO ₈	34
31. pCOHP and pCOBI of IrIn ₆ InSnO ₈	35
32. pCOHP and pCOBI of IrIn ₆ InTiO ₈	36
33. Orbital energies of In-5s, Sn-5s, Pb-6s, Bi-6s, and O-2p	37
34. Real part and imaginary part of the dielectric function for IrIn ₆ GaGeO ₈	38
35. Real part and imaginary part of the dielectric function for IrIn ₆ GaSnO ₈	39
36. Real part and imaginary part of the dielectric function for IrIn ₆ GaTiO ₈	40
37. Real part and imaginary part of the dielectric function for IrIn ₆ InGeO ₈	41
38. Real part and imaginary part of the dielectric function for IrIn ₆ InSnO ₈	42
39. Real part and imaginary part of the dielectric function for IrIn ₆ InTiO ₈	43
40. Table of cell parameter and bond lengths for IrIn ₆ InGeO ₈	44
41. Table of elastic constant for $IrIn_6XYO_8$ ($X = Ga$, In; $Y = Ge$, Sn, Ti)	45
42. Table of effective masses of carriers for $IrIn_6XYO_8$ ($X = Ga$, In; $Y = Ge$, Sn, Ti)	46
43. Table of electrical \mathcal{E}_{∞} , phonon vibrational \mathcal{E}_{p} and static \mathcal{E}_{r} dielectric constants of IrIn ₆ XYO ₈ (λ	Y =

Ga, In; $Y = $ Ge, Sn, Ti)	.47
44. Table of exciton binding energy of $IrIn_6XYO_8$ ($X = Ga$, In; $Y = Ge$, Sn, Ti)	.48
45. Table of Gibbs free energy of hydrogen adsorption (ΔG_{H^*}) for IrIn ₆ XYO ₈ (X = Ga, In; Y = Ga)	Ge,
Sn, Ti)	.49

1. Phonon dispersion curves of $IrIn_6XYO_8$ (X = Ga, In; Y = Ge, Sn, Ti)

Figure S1. Calculated phonon dispersion curves of $PtIn_6GaGeO_8$ (a), $PtIn_6GaSnO_8$ (b),

PtIn₆GaTiO₈ (c), PtIn₆InGeO₈ (d), PtIn₆InSnO₈ (e), and PtIn₆InTiO₈ (f).

2. Variation of energy and temperature against time for the AIMD simulation of IrIn₆GaGeO₈

Figure S2. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6GaGeO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, pale green, gray, and red balls represent the Ir, In, Ga, Ge, and O atoms, respectively.

3. Variation of energy and temperature against time for the AIMD simulation of IrIn₆GaSnO₈

Figure S3. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6GaSnO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, pale green, light gray, and red balls represent the Ir, In, Ga, Sn, and O atoms, respectively.

4. Variation of energy and temperature against time for the AIMD simulation of IrIn₆GaTiO₈

Figure S4. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6GaTiO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, pale green, sky blue, and red balls represent the Ir, In, Ga, Ti, and O atoms, respectively.

5. Variation of energy and temperature against time for the AIMD simulation of IrIn6InGeO8

Figure S5. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6InGeO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, gray, and red balls represent the Ir, In, Ge, and O atoms, respectively.

6. Variation of energy and temperature against time for the AIMD simulation of IrIn₆InSnO₈

Figure S6. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6InSnO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, light gray, and red balls represent the Ir, In, Sn, and O atoms, respectively.

7. Variation of energy and temperature against time for the AIMD simulation of IrIn6InTiO8

Figure S7. Fluctuations of total energy (red) and temperature T (black) during AIMD (ab initio molecular dynamics) simulations at 300 K. Insets show the crystal structures of $IrIn_6InTiO_8$ at 0 and 5 ps of AIMD simulations. The golden, violet, sky blue, and red balls represent the Ir, In, Ti, and O atoms, respectively.

8. Fatband Structures of IrIn6GaGeO8

Figure S8. Atomic orbital projections for $IrIn_6GaGeO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional. The color and thickness of the bands indicates the percentage of orbital character, where red denoting a greater contribution.

9. Fatband Structures of IrIn₆GaSnO₈

Figure S9. Atomic orbital projections for $IrIn_6GaSnO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional.

10. Fatband Structures of IrIn₆GaTiO₈

Figure S10. Atomic orbital projections for $IrIn_6GaTiO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional.

11. Fatband Structures of IrIn6InGeO8

Figure S11. Atomic orbital projections for $IrIn_6InGeO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional. The color and thickness of the bands indicates the percentage of orbital character, where blue denoting a greater contribution.

12. Fatband Structures of IrIn6InSnO8

Figure S12. Atomic orbital projections for $IrIn_6InSnO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional.

13. Fatband Structures of IrIn₆InTiO₈

Figure S13. Atomic orbital projections for $IrIn_6InTiO_8$ showing the relative contribution of each atomic orbital, which was calculated using DFT with the HSE06 functional.

Figure S14. Calculated DOS (density of states) of IrIn₆XYO₈ (X=Ga, In; Y=Ge, Sn, Ti).

15. Partial DOS of IrIn₆GaGeO₈

Figure S15. Calculated PDOS (partial density of states) of IrIn₆GaGeO₈.

16. Partial DOS of IrIn₆GaSnO₈

Figure S16. Calculated PDOS (partial density of states) of IrIn₆GaSnO₈.

17. Partial DOS of IrIn6GaTiO8

Figure S17. Calculated PDOS (partial density of states) of IrIn₆GaTiO₈.

18. Partial DOS of IrIn6InGeO8

Figure S18. Calculated PDOS (partial density of states) of IrIn₆InGeO₈.

19. Partial DOS of IrIn6InSnO8

Figure S19. Calculated PDOS (partial density of states) of IrIn₆InSnO₈.

20. Partial DOS of IrIn6InTiO8

Figure S20. Calculated PDOS (partial density of states) of IrIn₆InTiO₈.

21. 1D ELF profile and 2D ELF isosurface for IrIn6GaGeO8

Figure S21. 1D ELF profile analyzed for the (a) Ir-In, (b) Ge-O, (c) In-O, (d) Ga-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in IrIn₆GaGeO₈. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

22. 1D ELF profile and 2D ELF isosurface for IrIn₆GaSnO₈

Figure S22. 1D ELF profile analyzed for the (a) Ir-In, (b) Sn-O, (c) In-O, (d) Ga-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in IrIn₆GaSnO₈. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

23. 1D ELF profile and 2D ELF isosurface for IrIn₆GaTiO₈

Figure S23. 1D ELF profile analyzed for the (a) Ir-In, (b) Ti-O, (c) In-O, (d) Ga-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in IrIn₆GaTiO₈. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

24. 1D ELF profile and 2D ELF isosurface for IrIn(1)6In(2)GeO8

Figure S24. 1D ELF profile analyzed for the (a) Ir-In, (b) Ge-O, (c) In1-O, (d) In2-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in $IrIn_{(1)6}In_{(2)}GeO_8$. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

25. 1D ELF profile and 2D ELF isosurface for IrIn(1)6In(2)SnO8

Figure S25. 1D ELF profile analyzed for the (a) Ir-In, (b) Sn-O, (c) In-1O, (d) In2-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in $IrIn_{(1)6}In_{(2)}SnO_8$. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

26. 1D ELF profile and 2D ELF isosurface for IrIn(1)6In(2)TiO8

Figure S26. 1D ELF profile analyzed for the (a) Ir-In, (b) Ti-O, (c) In1-O, (d) In2-O, (e) inter-octahedral In-In and (f) intra-octahedral In-In bonds in $IrIn_{(1)6}In_{(2)}TiO_8$. The plot in (g) and (h) depict 2D ELF isosurface, which are sliced perpendicular in the (100) and (101) directions, respectively.

27. pCOHP and pCOBI of IrIn₆GaGeO₈

Figure S27. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of IrIn₆GaGeO₈.

Figure S28. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of IrIn₆GaSnO₈.

29. pCOHP and pCOBI of IrIn₆GaTiO₈

Figure S29. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of $IrIn_6GaTiO_8$.

30. pCOHP and pCOBI of IrIn6InGeO8

Figure S30. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of IrIn₆InGeO₈.

31. pCOHP and pCOBI of IrIn6InSnO8

Figure S31. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of IrIn₆InSnO₈.

-5

-0.8 0.0 0.8 -COHP

-5

-0.2

0.0

1.6

Figure S32. Calculated pCOHP (partial crystal orbital Hamilton population) and pCOBI (partial crystal orbital bond indices) of IrIn₆InTiO₈.

0.2

COBI

-5

0.4 -0.5

-5

1.0

-0.030.00 0.03 0.06

COBI

.0 0.5 -COHP

0.0

33. Orbital energies of In-5s, Sn-5s, Pb-6s, Bi-6s, and O-2p

Figure S33. Orbital energies of In-5s, O-2p, Sn-5s, Pb-6s, and Bi-6s. The orbital energies were are obtained from NIST Standard Reference Database.

34. Real part and imaginary part of the dielectric function for IrIn₆GaGeO₈

Figure S34. HSE06 calculated real part and imaginary part of the dielectric function for IrIn₆GaGeO₈.

Figure S35. HSE06 calculated real part and imaginary part of the dielectric function for IrIn₆GaSnO₈.

36. Real part and imaginary part of the dielectric function for IrIn₆GaTiO₈

Figure S36. HSE06 calculated real part and imaginary part of the dielectric function for IrIn₆GaTiO₈.

Figure S37. HSE06 calculated real part and imaginary part of the dielectric function for IrIn₆InGeO₈.

38. Real part and imaginary part of the dielectric function for IrIn6InSnO8

Figure S38. HSE06 calculated real part and imaginary part of the dielectric function for IrIn₆InSnO₈.

39. Real part and imaginary part of the dielectric function for IrIn6InTiO8

Figure S39. HSE06 calculated real part and imaginary part of the dielectric function for $IrIn_6InTiO_8$.

40. Table of cell parameter and bond lengths for IrIn6InGeO8

	Lattice parameter			Bond length		
	а	error	Ir-In	In1-O	In2-O	Ge-O
PBE	10.31	1.87%	2.57	2.41	2.16	1.82
PBE-sol	10.19	0.69%	2.54	2.24	2.14	1.81
Experiment ¹	10.12		2.53	2.33	2.06	1.83

Table S1. Calculated and experimental cell parameter and bond lengths for IrIn6InGeO8using PBE and PBE-sol functionals

41. Table of elastic constant for $IrIn_6XYO_8$ (X = Ga, In; Y = Ge, Sn, Ti)

Compounds	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₄₄ (GPa)	
IrIn ₆ GaGeO ₈	244.301	93.783	39.228	_
IrIn ₆ GaSnO ₈	245.867	90.027	31.261	
IrIn ₆ GaTiO ₈	237.078	95.587	40.391	
IrIn ₆ InGeO ₈	240.160	89.091	35.501	
IrIn ₆ InSnO ₈	241.378	86.606	28.327	
IrIn ₆ InTiO ₈	233.217	89.324	34.166	

Table S2. Calculated elastic constant of $IrIn_6XYO_8$ (X = Ga, In; Y = Ge, Sn, Ti)

42. Table of effective masses of carriers for IrIn₆*XY*O₈ (*X* = Ga, In; *Y* = Ge, Sn, Ti)

Table S3. Calculated effective masses of electron and hole along different directions around CBM and VBM for $IrIn_6XYO_8$ (X = Ga, In; Y = Ge, Sn, Ti)

Compounds	Direction m_e^*/m_0		$m_{\rm h}*/m_0$
	$\Gamma \rightarrow K$	0.144	4.387
ITIN6GaGeO ₈	$\Gamma \rightarrow L$	0.144	5.732
	$\Gamma \rightarrow K$	0.151	43.961
	$\Gamma \rightarrow L$	0.151	58.188
In Cotio	$\Gamma \rightarrow K$	0.282	4.729
	$\Gamma \rightarrow L$	0.284	5.994
	$\Gamma \rightarrow K$	0.145	18.542
Irin6inGeO ₈	$\Gamma \rightarrow L$	0.145	3000.324
	$\Gamma \rightarrow K$	0.138	37.070
	$\Gamma \rightarrow L$	0.138	9.803
Irln InTiO	Г→К	0.275	3.916
$Irin_6In I 1O_8$	$\Gamma {\rightarrow} L$	0.275	5.515

43. Table of electrical ε_{∞} , phonon vibrational ε_p and static ε_r dielectric constants of IrIn₆XYO₈ (X = Ga, In; Y = Ge, Sn, Ti)

Table S4. Calculated electrical ε_{∞} , phonon vibrational ε_p and static ε_r dielectric constants of IrIn₆*XY*O₈ (*X* = Ga, In; *Y* = Ge, Sn, Ti)

Compounds	\mathcal{E}_{∞}	\mathcal{E}_{p}	\mathcal{E}_r
IrIn ₆ GaGeO ₈	27.297	8.294	35.591
IrIn ₆ GaSnO ₈	36.718	8.411	45.129
IrIn ₆ GaTiO ₈	8.524	7.119	15.643
IrIn ₆ InGeO ₈	13.805	8.340	22.145
IrIn ₆ InSnO ₈	13.705	7.712	21.417
IrIn ₆ InTiO ₈	7.353	8.695	16.048

44. Table of exciton binding energy of $IrIn_6XYO_8$ (X = Ga, In; Y = Ge, Sn, Ti)

Compounds	E _b / meV
IrIn ₆ GaGeO ₈	-1.5
IrIn ₆ GaSnO ₈	-1.0
IrIn ₆ GaTiO ₈	-14.8
IrIn ₆ InGeO ₈	-4.0
IrIn ₆ InSnO ₈	-4.1
IrIn ₆ InTiO ₈	-13.6

Table S5. Calculated exciton binding energy (E_b) of IrIn₆XYO₈ (X = Ga, In; Y = Ge, Sn, Ti)

45. Table of Gibbs free energy of hydrogen adsorption (ΔG_{H^*}) for IrIn₆XYO₈ (X = Ga, In; Y = Ge, Sn, Ti)

Table S6. Calculated Gibbs free energy of hydrogen adsorption (ΔG_{H^*}) of IrIn₆*XY*O₈ (*X* = Ga, In; *Y* = Ge, Sn, Ti) at most stable adsorption site on different low-index lattice planes. E_{DFT} represents the lowest total energy for the surface with adsorbed hydrogen atoms among all H-adsorption configurations.

Photocatalysts	Lattice plane	E _{DFT} /eV	$\Delta G_{\mathrm{H}*}/\mathrm{eV}$	Adsorption site
IrIn6GaGeO8	(100)	-181.86	-0.43	2
	(110)	-182.82	-0.11	4
	(111)	-184.51	-0.05	12
	(100)	-179.32	-0.40	2
IrIn6GaSnO8	(110)	-181.34	-0.14	4
	(111)	-183.26	-0.26	10
	(100)	-195.90	-0.40	2
IrIn6GaTiO8	(110)	-195.70	-0.66	8
	(111)	-196.47	0.22	10
	(100)	-179.32	-0.42	1
IrIn ₆ InGeO ₈	(110)	-180.68	-0.73	3
	(111)	-182.54	-0.10	10
IrIn ₆ InSnO ₈	(100)	-176.52	-0.39	1
	(110)	-178.88	-0.63	3
	(111)	-181.01	-0.29	10
IrIn ₆ InTiO ₈	(100)	-193.18	-0.38	1
	(110)	-193.68	-0.30	4
	(111)	-195.43	-0.65	9

S49

References:

 J. Kohler, H. A. Friedrich, C. Lee and M. H. Whangbo, Z. Anorg. Allg. Chem., 2007, 633, 1464-1471.