## **Supporting Information**

## Organic Redox Additive Incorporated PANI Hydrogel Electrodes for Flexible High-Energy-Density Supercapacitors

Liyang Dou<sup>a</sup>, Shixiang Zhou<sup>b</sup>, Jie Ma<sup>a</sup>, Cheng Zhao<sup>a</sup>, Peixin Cui<sup>a</sup>, Shifang Ye<sup>a</sup>,
Peizhong Feng<sup>a</sup>, Xiuquan Gu<sup>a</sup>, Sheng Huang<sup>a</sup>, Xueyu Tao<sup>a\*</sup>
<sup>a</sup> School of Materials and Physics, China University of Mining and Technology,
Xuzhou 221116, Jiangsu, China.
<sup>b</sup> Department of Materials Science and Engineering, National University of Singapore,
117575, Singapore.

<sup>\*</sup> Corresponding author.

Email address: taoxueyu@cumt.edu.cn.



Fig. S1. (a) FTIR spectrum and (b) XRD of HQ.



**Fig. S2.** SEM images from another cross-section that was perpendicular to the 3D porous-like cross-section: (a) PP hydrogel; (b-f) PHP hydrogels with various concentrations of HQ: 5, 10, 15, 20, 25 mmol/L.



Fig. S3. Specific capacitance of PHP hydrogel electrodes with various concentrations of HQ at current density of 0.5 A/g.

| Scan rate<br>(mV/s) | PP  | PHP-5 | PHP-10 | PHP-15 | PHP-20 | PHP-25 |
|---------------------|-----|-------|--------|--------|--------|--------|
| 5                   | 424 | 487   | 591    | 549    | 546    | 542    |
| 10                  | 386 | 420   | 535    | 506    | 502    | 493    |
| 20                  | 323 | 362   | 457    | 441    | 436    | 430    |
| 30                  | 260 | 304   | 403    | 392    | 390    | 386    |
| 50                  | 209 | 251   | 330    | 315    | 308    | 302    |
| 100                 | 136 | 176   | 230    | 209    | 203    | 195    |

**Table S1.** Specific capacitance of PHP hydrogel electrodes at different scan rates.

| Current<br>density<br>(A/g) | РР  | PHP-5 | PHP-10 | PHP-15 | PHP-20 | PHP-25 |
|-----------------------------|-----|-------|--------|--------|--------|--------|
| 0.5                         | 421 | 535   | 642    | 487    | 475    | 456    |
| 1.0                         | 359 | 444   | 512    | 394    | 385    | 379    |
| 1.5                         | 339 | 392   | 441    | 368    | 357    | 352    |
| 2.5                         | 320 | 339   | 369    | 346    | 341    | 336    |
| 5.0                         | 289 | 291   | 325    | 320    | 318    | 312    |

 Table S2. Specific capacitance of PHP hydrogel electrodes at different current densities.

**Table S3.** Resistance of PP and PHP hydrogel electrodes.

| Resistance      | PP   | PHP-5 | PHP-10 | PHP-15 | PHP-20 | PHP-25 |
|-----------------|------|-------|--------|--------|--------|--------|
| R <sub>ct</sub> | 0.81 | 0.31  | 0.28   | 0.29   | 0.30   | 0.32   |
| R <sub>s</sub>  | 2.06 | 1.38  | 1.01   | 1.20   | 1.62   | 1.68   |



**Fig. S4.** Cyclic voltammetry of PHP-10 hydrogel electrode measured at different scan rates: (a) 5 mV/s, (b) 10 mV/s, (c) 20 mV/s, (d) 30 mV/s, (e) 50 mV/s, (f) 100 mV/s. The shadowed area is the capacitive contribution.

Table S4. The diffusion-controlled and surface capacitive of PHP hydrogel electrodes

| Scan  | Р     | P     | PH    | P-5   | PHI   | P-10  | PHI   | P-15  | PHI   | <b>P-20</b> | PH    | P-25  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|
| rate  |       |       |       |       |       |       |       |       |       |             |       |       |
| (mV/s | $C_s$ | $C_d$       | $C_s$ | $C_d$ |
| )     |       |       |       |       |       |       |       |       |       |             |       |       |
| 5     | 127   | 297   | 163   | 324   | 202   | 389   | 193   | 356   | 188   | 358         | 173   | 369   |
| 10    | 127   | 259   | 163   | 257   | 202   | 334   | 193   | 313   | 188   | 314         | 173   | 320   |
| 20    | 127   | 196   | 163   | 199   | 202   | 255   | 193   | 248   | 188   | 248         | 173   | 257   |
| 30    | 127   | 133   | 163   | 141   | 202   | 202   | 193   | 199   | 188   | 202         | 173   | 213   |
| 50    | 127   | 82    | 163   | 88    | 202   | 127   | 193   | 122   | 188   | 120         | 173   | 129   |
| 100   | 127   | 9     | 163   | 13    | 202   | 27    | 193   | 16    | 188   | 15          | 173   | 22    |

at different scan rates.



**Fig. S5.** Cycle stability of PANI hydrogel electrodes with and without HQ at 1.5 A/g current density.

It can be seen from the SEM before and after cycling, the morphology of PHP-10 hydrogel electrode and PVA/H<sub>2</sub>SO<sub>4</sub> gel electrolyte had changed (Fig. S6). Firstly, the PHP-10 hydrogel electrode exhibited a honeycomb-like three-dimensional network structure with uniform pore size distribution and thin pore walls before the cycle (Fig. S6a). After 10,000 discharge/charge cycles, the morphology of the hydrogel electrode surface became rougher and displayed obvious loose pore walls, indicating that dissolution or other side reactions had occurred during the cycling process, and thus the repeated cycling could deteriorate the electrode structure (Fig. S6b). Secondly, the PVA/H<sub>2</sub>SO<sub>4</sub> gel electrolyte had a three-dimensional network structure with regular and uniform pore sizes, while after 10,000 cycles, the pore walls of the hydrogel became thicker and the pores shrank, which may be due to the entanglement of polymer chains

(Fig. S6c, d).



**Fig. S6.** SEM images of (a-b) PHP-10 hydrogel and (c-d) PVA/H<sub>2</sub>SO<sub>4</sub> gel electrolyte before and after 10,000 charge/discharge cycles.

The electrochemical tests of the PHP-10 hydrogel electrode before and after cycling were shown in Fig. S7. The electrochemical performance decreased after 10,000 charge/discharge cycles. The CV, GCD, EIS, and cycle stability data of PHP-10 hydrogel electrode were performed in an asymmetric three-electrode cell setup using 1 M H<sub>2</sub>SO<sub>4</sub> as an electrolyte in the fixed potential window of -0.2 to 0.8 V. It can be seen from CV curves (Fig. S7a) that after 10,000 charge/discharge cycles, the peak of CV curves of PHP-10 hydrogel electrode did not change, only the integrated area became smaller than that of before the cycle, revealing its capacitive response became

 $C_{m} = \frac{\int Idv}{2 * Sr * m * \Delta U}$ worse ( $C_{m} = \frac{\int Idv}{2 * Sr * m * \Delta U}$ ). GCD result (Figure S7b) showed the symmetrical charge-discharge curves of the electrode remained the same after cycling study. It can

be observed from the GCD curves that PHP-10 hydrogel electrode took less time to complete a charge/discharge cycle after 10,000 cycles than before the cycle. It can be found that the calculated specific capacitance at current density of 0.5 A/g was 603 F/g

 $C_m = \frac{I\Delta t}{m\Delta U}$ , which was lower than that of before the cycle (642 F/g). EIS curves (Figure S7c) implied that the R<sub>s</sub> and R<sub>ct</sub> values of PHP-10 hydrogel electrode were 1.23  $\Omega$  and 3.98  $\Omega$ , which were both higher than that of before the cycle (0.71  $\Omega$  and 1.35  $\Omega$ ). Besides, the electrode exhibited superior cycling stability with a capacitance retention of 81.5% in 10,000 charge/discharge cycles (Figure S7d). Thus, the electrochemical performance of PHP-10 hydrogel electrode did decrease after 10,000 charge/discharge cycles.



Fig. S7. Electrochemical performance of PHP-10 hydrogel electrode before and after

10,000 charge/discharge cycles: (a) CV curves under scan rate of 5 mV/s; (b) GCD curves at current density of 0.5 A/g; (c) Nyquist plots; (d) Cycle stability at 1.5 A/g current density.

The electrochemical tests of the supercapacitor based on PHP-10 hydrogel electrodes and PVA/H<sub>2</sub>SO<sub>4</sub> gel electrolyte before and after 10,000 charge/discharge cycles were shown in Fig. S8. The electrochemical performance decreased after 10,000 charge/discharge cycles. It can be seen from CV, Ragone plot, and EIS curves (Fig. S8a-c) that after 10,000 charge/discharge cycles, the supercapacitor had a smaller integrated area of CV curve than that of before the cycle. The calculated energy density was 8.5 Wh/kg at the power density of 125 W/kg, which was lower than that of before the cycle (energy density of 12.5 Wh/kg at the power density of 125 W/kg). The internal resistance increased and the capacitive performance decreased. Besides, the supercapacitor exhibited cycling stability with a capacitance retention of 77.6 % in 10,000 charge/discharge cycles (Fig. S8d). Therefore, the electrochemical performance of the supercapacitor did decrease after 10,000 charge/discharge cycles.



**Fig. S8.** Electrochemical performance of flexible supercapacitor based on PHP-10 hydrogel electrodes and  $PVA/H_2SO_4$  gel electrolyte before and after 10,000 charge/discharge cycles: (a) CV curves at 10 mV/s scan rate; (b) Ragone plots; (c) Nyquist plots; (d) Cycle stability at 1.5 A/g current density.



Fig. S9. Different forms and oxidation/protonation transition processes of

## polyaniline<sup>1</sup>.

**Table S5.** Comparison of electrochemical performance of supercapacitors based onPANI electrodes.

| Electrode materials       | Energy density                | Power density         | Cycle<br>stability | Ref.         |
|---------------------------|-------------------------------|-----------------------|--------------------|--------------|
| PANI/PVA                  | 7.8 Wh/kg                     | 200 W/kg              | 87%<br>(3,000)     | 2            |
| PANI/PVA/TiO <sub>2</sub> | 2.8 Wh/kg                     | 125.0 W/kg            | 86.9%<br>(10)      | 3            |
| PANI/CNT/PVA              | 14.3 $\mu$ Wh/cm <sup>2</sup> | $97.5 \ \mu W/cm^2$   | 87.5%<br>(1.000)   | 4            |
| PANI/PyHCP                | 0.57 Wh/kg                    | 320.63 W/kg           | 90.7%<br>(2.000)   | 5            |
| PANI/PVA                  | 49.9 µWh/cm <sup>2</sup>      | $0.4 \text{ mW/cm}^2$ | 76%                | 6            |
| PANI/CF                   | 2.5 Wh/kg                     | 300 W/kg              | 86.1%<br>(1.000)   | 7            |
| PANI/HQ/PVA               | 12 Wh/kg                      | 125 W/kg              | 77.6%<br>(10,000)  | This<br>work |



Fig. S10. Digital photo of PHP-10 hydrogel-based FSCs wrapped with VPH film.



Fig. S11. Digital photo of PHP-10 hydrogel-based FSCs and bending at angle of 90°

and 180°.

## Reference

- 1. V. Babel and B. L. Hiran, *Polym Composite*, 2021, **42**, 3142-3157.
- 2. Y. L. Zou, C. Chen, Y. J. Sun, S. C. Gan, L. B. Dong, J. H. Zhao and J. H. Rong, *Chemical Engineering Journal*, 2021, **418**.
- J. Du, W. L. Zhu, Q. L. Yang, X. H. She, H. Wu, C. Tsou, D. G. Manuel and H. P. Huang, Colloid Polym Sci, 2022, 300, 111-124.
- 4. F. L. Lai, Z. M. Fang, L. Cao, W. Li, Z. D. Lin and P. Zhang, *Ionics*, 2020, 26, 3015-3025.
- 5. H. C. Jung, R. Vinodh, C. V. V. M. Gopi, M. Yi and H. J. Kim, *Mater Lett*, 2019, 257.
- X. Chu, H. C. Huang, H. T. Zhang, H. P. Zhang, B. N. Gu, H. Su, F. Y. Liu, Y. Han, Z. X. Wang, N. J. Chen, C. Yan, W. Deng, W. L. Deng and W. Q. Yang, *Electrochim Acta*, 2019, 301, 136-144.
- 7. H. Huang, S. C. Abbas, Q. Deng, Y. Ni, S. Cao and X. Ma, *J Power Sources*, 2021, 498.