Supplementary Materials

Heterojunction composite of Bi₂Se₃ nanosheets and MoO₃ nanobelts for high-performance triethylamine sensor

Xiangyun Tan^a, Li Wang^a, Xi Chen^a, Haoliang Zhang^a, Si Chen^a, Libing Qian^b, Zhiyuan Chen^b,

Chunqing He^{a,*}

^aKey Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan, 430072, China ^bHubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China

^{*} Corresponding author.

E-mail address: hecq@whu.edu.cn (C. He).

Figure S1 (a,b) Dynamic response and recovery curves of Bi_2Se_3/MoO_3-1 and Bi_2Se_3/MoO_3-3 sensor. (c,d) Response/recovery time curve of Bi_2Se_3/MoO_3-1 and Bi_2Se_3/MoO_3-3 sensor at 240 °C.

Figure S2 (a) The dynamic response/recovery curve of Bi_2Se_3/MoO_3 -2 to 10 ppm various gases at 240 °C. (b) The reproducibility of Bi_2Se_3/MoO_3 -2 sensor after 30 days.

Figure S3 Dynamic resistance curves of (a) MoO₃ and (b)Bi₂Se₃/MoO₃-2 sensors for 10 ppm TEA at 240 °C.

In this experiment, liquid TEA, acetone, ethanol, aniline, ammonia, and formaldehyde were quantitatively injected into a heated plate in the test chamber (18L) using a microsyringe to prepare the corresponding gas species. All sensor characteristics were tested in air with a relative humidity (RH) of 35%. The concentrations of the testing gas (C, ppm) were achieved through a static liquid gas distribution method, which was calculated by **Eq. (1)**:

$$V_{1} = \frac{V \times C \times M}{22.4 \times d \times p} \times 10^{-9} \times \frac{273 + T_{r}}{273 + T_{b}}$$
(1)

where ρ (g/mL⁻¹) is the density of the testing gas, V₂ (L) is the volume of the test chamber, M (g/mol⁻¹) is the molecular weight of the testing gas, M(g) is the molecular mass of the liquid, d(g/cm³) is the density of the liquid, T_r represents the room temperature (°C), and T_b represents the temperature inside the test chamber (°C). The limit of detection (LoD) of TEA gas is studied by linear extrapolation of the response sensitivity as a function of TEA concentration LoD. **The calculating formula of the LoD:**

$$LOD_{ppm} = \frac{3S}{K} = \frac{3}{K} \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}}$$
(2)

where S refers to the root mean square of the baseline before target gas exposure, and K is the slope of the fitting line.

In Bi₂Se₃/MoO₃-2 work, S=0.02751, K=14.92051, LOD=5.5 ppb.

In MoO₃ work, S=0.06256, K=3.13271, LOD=59.9 ppb.

Figure S4 (a) UV-vis diffuse reflectance spectra and (b) the plot of $(\alpha h \upsilon)^2$ –(h υ) of MoO₃ and BiSe₃/MoO₃-2.

Figure S5 (a,b) Nitrogen adsorption/desorption isotherms of Bi_2Se_3/MoO_3-1 and Bi_2Se_3/MoO_3-3 .