Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Material

Development of Pseudo 3D Covalent Organic Framework Nanosheets for Sensitive

and Selective Biomolecule Detection of Infectious Disease

Nargish Parvin, Tapas K. Mandal* and Sang W. Joo*

School of Mechanical Engineering and IT, Yeungnam University, Gyeongsan 38541, Republic of Korea

Contents: Characterizations:	Page no S2
Figure S1. TGA-TDA spectrum of p-3D-COF-NSs	S3
Figure S2. AFM images of the p-3D-COF-NSs , confirming the sheet-like morphology.	
Thickness distribution of p-3D-COF-NSs UV spectrum of the bulk COF material.	S3
Figure S3. FTIR-spectrum of p-3D-COF-NSs SEM images of the bulk COF material,	
confirming the sheet-like morphology.	S4
Figure S4. UV spectrum of p-3D-COF-NSs	S4
Figure S5. Linearity curve of COVID-19 DNA (T) detection concentrations with presence of p-3D-COF-NSs and	d ssDNA. S5
Figure S6. Comparison of real spectrum a)Nasal swab and b) Throat swab under different conditions	S6
Figure S7. Based on this assay we proposed a prototype device to detect Covid-19 and as well as other disease	es S6
Table S1. Crystallographic information of the p-3D-COF-NSs	S7
Table S2. Atomic information for modeled p-3D-COF-NSs	S8

Characterization

The morphology of the p-3D-COF-NSs was studied using field emission transmission electron microscopy (FE-TEM, FEI Tecnai F20). The sample was prepared by placing a drop of the p-3D-COF-NSs solution on to a non-coated copper grid and allowing the solvent to evaporate in the air at room temperature. HRTEM images were recorded using a Gatan K2 Summit direct-detection electron-counting camera at an operating voltage of 300 kV. The samples used for atomic force microscopy (AFM) were prepared using an ethanolic suspension of the p-3D-COF-NSs dropped onto piranha-cleaned Si/SiO₂, allowing the solvent to evaporate in air. The AFM images were recorded using a Dimension 3100 atomic force spectrometer equipped with a NanoScope Analysis v140r1sr2 controller (AFM, NanoscopeIIIa, Digital Instruments, Inc., USA) operated in the tapping mode under an air atmosphere. The sample used for X-ray diffraction (XRD) analysis was prepared using dried p-3D-COF-NSs placed on a clean glass substrate. XRD analysis was performed on a PANalyticalX'PertPRO MPD operated at 40 kV and 30 mA using Cu K α as the X-ray source (λ =1.540598 Å) over a 2 θ angle range of 2°-40° at a scan rate of 0.0262606 deg s⁻¹. Field emission scanning electron microscopy (FESEM) was carried out on a Hitachi S-4800 instrument. The samples were treated with 5 nm Pt sputtering before observation. Fourier transform infrared (FT-IR) spectroscopy was carried out on a PerkinElmer FTIR spectrometer in transmittance mode over the wavenumber range of 400-4000 cm⁻¹. UV-vis spectra were recorded on a UV-vis spectrophotometer (UV-vis, Optizen 3220, Double beam). Fluorescence spectrometry was carried out on a HITACHI F-7000 fluorescence spectrophotometer. Thermogravimetric analysis (TGA) was performed on a TA Instruments DSC-TGA, SDT-Q600 V20.5 Build 15 system, in the temperature range of 30–800 °C under a flow of N2 (30 mL min⁻¹) at a heating rate of 10 °C min–1. The porosity and surface area of the p-3D-COF-NSs were measured using nitrogen adsorption/desorption analysis at 77 K using a Micromeritics ASAP 2000 instrument. Before the experiment, the sample was dried at 120 °C and evacuated for 8 h under a flow of argon at a flow rate of 60 SCCM at 140 °C. The pore size distribution data were calculated based on the non-local density functional theory (NLDFT) by using the Micro meristics ASAP2020 software package.

Figure S1. TGA-TDA spectrum of p-3D-COF-NSs

Figure S2. AFM images of the p-3D-COF-NSs, confirming the sheet-like morphology. Thickness distribution of p-3D-COF-NSs.

Figure S3. FTIR-spectrum of p-3D-COF-NSs and 2,5-furandicarboxaldehyde

Figure S4. UV spectrum of p-3D-COF-NSs

Figure S5. Linearity curve of COVID-19 DNA (T) detection concentrations with presence of p-3D-COF-NSs and ssDNA. The excitation wavelength is 590 nm, and the monitored emission wavelength is 612 nm. The detection limit of T (Corona Virus DNA in this study) using p-3D-COF-NSs sensor is determined from the following equation: $DL = K \times SD/S$, where K = 3, SD is the standard deviation of the blank solution, and S is the slope of the calibration curve. $DL = K \times SD/S=3 \times 13.05/17.01 \text{ pM} = 2.301 \times 10^{-12} \text{M}$ (therefore, finally limit of detection=2.301 pM).

Figure S6. Comparison of real spectrum a) Nasal swab and b) Throat swab under different conditions

Figure S7. Based on this assay we proposed a prototype device to detect Covid-19 and as well as other diseases

Empirical formula	C ₁₃ H ₁₆ N ₂ O	
Fw	216.28	
Stacking model	slipped-AA	
a (Å)	28.72002 ± 0.12638	
b (Å)	30.27715 ± 0.13340	
c (Å)	3.92065 ± 0.01755	
lpha (degree)	90.17498 ± 0.00465	
β (degree)	90.04307 ± 0.00793	
γ (degree)	120.21208 ± 0.00744	
Interlayer Distance (Å)	3.91903Å	

C(1)	-14.786	0.299	-0.079
C(2)	-15.599	-0.726	0.193
C(3)	-15.064	-1.971	0.526
C(4)	-15.913	-3.041	0.810
C(5)	-17.296	-2.867	0.761
C(6)	-17.830	-1.622	0.429
C(7)	-16.982	-0.552	0.145
C(8)	-19.315	-1.435	0.377
C(9)	-13.056	2.032	-0.538
C(10)	-12.114	3.027	-0.802
C(11)	-12.535	4.312	-1.145
C(12)	-13.897	4.602	-1.224
C(13)	-14.838	3.607	-0.961
C(14)	-14.418	2.322	-0.617
N(15)	-15.269	1.424	-0.379
N(16)	-11.680	5.215	-1.384
C(17)	-15.339	-4.377	1.166
H(18)	-13.695	0.162	-0.041
H(19)	-13.973	-2.109	0.564
H(20)	-17.965	-3.711	0.985
H(21)	-17.403	0.430	-0.118
H(22)	-19.819	-2.394	0.631
H(23)	-19.615	-0.652	1.109
H(24)	-19.613	-1.120	-0.648
H(25)	-12.725	1.019	-0.267
H(26)	-11.040	2.798	-0.739
H(27)	-14.228	5.615	-1.495
H(28)	-15.913	3.836	-1.023
H(29)	-14.227	-4.320	1.153
H(30)	-15.682	-4.668	2.184
H(31)	-15.680	-5.136	0.428

 Table S2. Atomic information for modeled p-3D-COF-NSs