Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Effects of neutral point defects on the solid-state electrolyte Li₃ScBr₆

Ming Jiang¹, Zhi-Wen Chen^{2,*}, Adwitiya Rao², Li-Xin Chen², Parvin Adeli³, Patrick Mercier³, Yaser Abu-Lebdeh³, Chandra Veer Singh^{2,4,*}

¹Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

²Department of Materials Science and Engineering, University of Toronto, Ontario M5S 3E4, Canada

³Energy, Mining, and Environment Research Centre, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada

⁴Department of Mechanical and Industrial Engineering, University of Toronto, Ontario M5S 3G8, Canada

$U_{\alpha}(\mathbf{N})$	La	ttice constant (Å)		band gan (aV)
$U_{\rm eff}(ev)$	а	b	С	band gap (ev)
0	6.77	11.73	6.69	2.97
1	6.77	11.74	6.69	3.11
2	6.78	11.75	6.71	3.26
3	6.79	11.76	6.72	3.66
4	6.79	11.76	6.72	3.69
5	6.79	11.77	6.72	3.72
6	6.79	11.76	6.75	3.77

Table S1. The lattice constant and band gap of Li_3ScBr_6 at different U_{eff} values.

	$U_{eff}=0$	U _{eff} =1	U _{eff} =2	U _{eff} =3	U _{eff} =4	U _{eff} =5	U _{eff} =6
V_{Li}	2.50	2.51	2.50	2.50	2.48	2.48	2.47
V_{Sc}	7.65	7.64	7.64	7.64	7.64	7.62	7.63
V_{Br}	2.92	2.91	2.94	2.94	2.94	2.93	2.96
Li _{int}	0.49	0.49	0.50	0.52	0.47	0.53	0.51
Sc _{int}	2.83	2.79	2.78	2.78	2.78	2.78	2.76
$\mathrm{Br}_{\mathrm{int}}$	1.19	1.18	1.18	1.19	1.16	1.17	1.17
Li _{Sc}	4.40	4.37	4.41	4.42	4.39	4.41	4.41
Li_{Br}	2.76	2.73	2.75	2.76	2.77	2.74	2.72
$\mathbf{Sc}_{\mathrm{Li}}$	1.77	1.80	1.81	1.81	1.76	1.75	1.78
$\mathrm{Sc}_{\mathrm{Br}}$	5.94	5.91	5.92	5.91	5.90	5.90	5.92
$\mathrm{Br}_{\mathrm{Li}}$	3.26	3.28	3.29	3.26	3.25	3.26	3.24
Br _{Sc}	7.34	7.34	7.36	7.39	7.37	7.39	7.36

Table S2. Defect formation energy of Li_3ScBr_6 at different U_{eff} values.

	σ (mS/cm)	$E_a(eV)$
U _{eff} =0	1.36	0.221
$U_{eff} = 1$	1.34	0.219
$U_{eff}=2$	1.37	0.218
$U_{eff}=3$	1.39	0.216
$U_{eff}=4$	1.38	0.216
$U_{eff}=5$	1.42	0.215
$U_{eff}=6$	1.38	0.217

Table S3. Li⁺ ionic conductivity (σ) and activation energy (E_a) of pristine Li₃ScBr₆ at different U_{eff} values.

	0.625%	1.25%	1.875%	2.50%	3.125%	
V _{Li}	2.42	2.50	2.61	2.69	2.73	
V_{Sc}	7.58	7.64	7.61	7.68	7.71	
V_{Br}	2.86	2.94	2.98	2.95	3.01	
Li _{int}	0.55	0.52	0.6	0.64	0.65	
Sc_{int}	2.67	2.78	2.88	2.94	2.92	
Br_{int}	1.23	1.19	1.22	1.26	1.28	
Li _{Sc}	4.36	4.42	4.44	4.30	4.38	
Li _{Br}	2.66	2.76	2.72	2.87	2.83	
$\mathbf{Sc}_{\mathrm{Li}}$	1.72	1.81	1.83	1.89	1.95	
$\mathrm{Sc}_{\mathrm{Br}}$	5.82	5.91	5.96	6.03	6.10	
$\mathrm{Br}_{\mathrm{Li}}$	3.17	3.26	3.3	3.38	3.45	
Br_{Sc}	7.20	7.39	7.41	7.35	7.48	

Table S4. Formation energy (eV) of point defects in Li_3ScBr_6 at different defect concentrations. V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br)

Table S5 . Bulk modulus (GPa) of defective Li ₃ ScBr ₆ at different defect concentrations.						
V _X : X vacar	ncy; X _{int} : X inter	rstitial; X _Y : X	occupying the Y	Y lattice site (X	X, Y = Li, Sc or	
Br).						
	0.625%	1.25%	1.875%	2.50%	3.125%	
V	14 32	13.66	13 25	12 41	12.01	

V _{Li}	14.32	13.66	13.25	12.41	12.01
V_{Sc}	7.57	6.70	6.02	5.42	4.06
V _{Br}	14.12	13.78	12.09	11.48	10.95
Li _{int}	14.71	13.26	12.88	11.91	10.43
Br _{int}	16.25	15.53	13.37	12.5	11.45
Li _{Sc}	11.95	10.69	9.35	8.44	8.30
$\mathrm{Sc}_{\mathrm{Br}}$	14.69	12.23	11.41	10.40	9.35
$\mathrm{Br}_{\mathrm{Li}}$	9.77	6.88	6.15	5.58	4.19
Br _{Sc}	11.61	10.91	9.84	8.11	7.55

Table S6. Shear modulus (GPa) of defective Li_3ScBr_6 at different defect concentrations. V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br).

	0.625%	1.25%	1.875%	2.50%	3.125%
V_{Li}	9.86	7.27	6.69	5.02	4.15
V_{Sc}	10.9	8.72	7.09	6.51	5.17
V _{Br}	9.26	7.40	6.33	5.71	4.24
Li _{int}	11.01	10.66	9.04	8.89	7.23
Br _{int}	8.08	6.14	5.06	4.68	3.57
Lisc	10.12	9.29	8.18	7.41	6.79
$\mathrm{Sc}_{\mathrm{Br}}$	9.85	8.88	7.84	7.29	6.61
$\mathrm{Br}_{\mathrm{Li}}$	9.32	8.29	7.34	6.89	5.63
Br _{Sc}	9.21	8.68	7.81	6.27	5.34

	0.625%	1.25%	1.875%	2.50%	3.125%	
V _{Li}	21.87	18.53	17.68	16.06	15.55	
V_{Sc}	21.49	18.24	16.23	15.01	14.3	
V_{Br}	20.18	18.82	18.32	17.47	15.16	
Li _{int}	20.35	17.73	16.61	15.22	14.38	
Br _{int}	19.91	16.27	15.59	14.16	13.02	
Li _{Sc}	20.59	21.62	19.12	18.53	16.93	
$\mathrm{Sc}_{\mathrm{Br}}$	22.75	21.41	20.9	19.71	18.79	
$\mathrm{Br}_{\mathrm{Li}}$	19.76	17.74	15.75	14.89	13.15	
Br _{Sc}	21.44	20.57	19.13	17.80	16.73	

Table S7. Young's modulus (GPa) of defective Li_3ScBr_6 at different defect concentrations. V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br).

C _{SSE}	C _{electrode}	x_m	Phase equilibria at $x_{\rm m}$	ΔE_D
Driatina	LiCoO ₂	0.38	CoO, LiBr, Br, Sc ₂ O ₃	-93.16
Pristine	Li _{0.5} CoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-100.53
V 7	LiCoO ₂	0.38	CoO, LiBr, Br, Sc ₂ O ₃	-93.89
v _{Li}	Li _{0.5} CoO ₂	0.35	CoO, LiBr, Br, Sc ₂ O ₃	-101.36
N.	LiCoO ₂	0.35	CoO, LiBr, Br, Sc ₂ O ₃	-86.23
V _{Sc}	Li _{0.5} CoO ₂	0.32	CoO, LiBr, Br, Sc ₂ O ₃	-92.71
V_{Br}	LiCoO ₂	0.38	CoO, LiBr, Br, Sc ₂ O ₃	-111.41
	Li _{0.5} CoO ₂	0.35	CoO, LiBr, Br, Sc ₂ O ₃	-119.75
Li _{int}	LiCoO ₂	0.37	CoO, LiBr, Br, Sc ₂ O ₃	-109.68
	Li _{0.5} CoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-117.80
-	LiCoO ₂	0.37	CoO, LiBr, Br, Sc ₂ O ₃	-92.44
Br _{int}	Li _{0.5} CoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-99.71
	LiCoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-85.52
L1 _{Sc}	Li _{0.5} CoO ₂	0.31	CoO, LiBr, Br, Sc ₂ O ₃	-91.92
С -	LiCoO ₂	0.18	CoO, LiBr, Br, Sc ₂ O ₃	-170.74
Sc_{Br}	Li _{0.5} CoO ₂	0.37	CoO, LiBr, Br, Sc ₂ O ₃	-179.49
D	LiCoO ₂	0.38	CoO, LiBr, Br, Sc ₂ O ₃	-90.76
$\mathbf{Br}_{\mathrm{Li}}$	Li _{0.5} CoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-97.35
D.	LiCoO ₂	0.34	CoO, LiBr, Br, Sc ₂ O ₃	-88.37
Br_{Sc}	Li _{0.5} CoO ₂	0.31	CoO, LiBr, Br, Sc ₂ O ₃	-96.25

Table S8. Phase equilibria and minimum decomposition energies (ΔE_D : meV/atom) of ideal and defective Li₃ScBr₆ at the interface with LiCoO₂ cathode material. V_X: X vacancy; X_{int}: X interstitial; X_Y: X occupying the Y lattice site (X, Y = Li, Sc or Br).

C _{SSE}	C _{electrode}	x_m	Phase equilibria at $x_{\rm m}$	ΔE_D
Drigting	LiFePO ₄	0.68	LiBr, ScPO ₄ , Fe ₃ (PO ₄) ₂	-12.73
Pristine	FePO ₄	0.38	LiBr, LiFeBr ₄ , ScPO ₄	-58.19
V_{Li}	LiFePO ₄	0.66	LiFeBr ₄ , ScPO ₄ , Fe ₃ (PO ₄) ₂ , LiBr	-14.92
	FePO ₄	0.38	Br, ScPO ₄ , LiBr, LiFeBr ₄	-58.65
V	LiFePO ₄	0.21	ScPO ₄ , ScBr ₃ , LiFeBr ₄ , LiBr	-21.43
v _{Sc}	FePO ₄	0.44	Br, Li ₃ Sc ₂ (PO ₄) ₃ , LiBr, LiFeBr ₄	-54.45
N/	LiFePO ₄	0.02	Fe ₂ P, ScBrO, ScPO ₄ , ScBr ₃ , LiBr	-20.64
v _{Br}	FePO ₄	0.41	LiFeBr ₄ , LiBr, LiFePO ₄ , ScPO ₄	-74.36
Li _{int}	LiFePO ₄	0.02	LiBr, ScPO ₄ , Fe ₂ P, ScBr ₃ , ScBrO	-20.14
	FePO ₄	0.40	ScPO ₄ , LiBr, LiFePO ₄ , LiFeBr ₄	-73.25
D	LiFePO ₄	0.66	LiBr, ScPO ₄ , Fe ₃ (PO ₄) ₂ , LiFeBr ₄	-14.79
Br _{int}	FePO ₄	0.47	Li ₃ Sc ₂ (PO ₄) ₃ , ScPO ₄ , Br, LiFeBr ₄	-57.75
т:	LiFePO ₄	0.60	ScPO ₄ , LiFeBr ₄ , Fe ₃ (PO ₄) ₂ , LiBr	-17.09
Ll _{Sc}	FePO ₄	0.44	Br, LiBr, LiFeBr ₄ , Li ₃ Sc ₂ (PO ₄) ₃	-54.07
C	LiFePO ₄	0.05	LiBr, Fe ₂ P, ScBrO, ScBr ₃ , FeP	-78.60
Sc _{Br}	FePO ₄	0.47	LiBr, Fe ₃ (PO4) ₂ , ScPO ₄ , LiFeBr ₄	-116.19
D	LiFePO ₄	0.64	Fe ₃ (PO ₄) ₂ , LiFeBr ₄ , LiBr, ScPO ₄	-17.25
Br _{Li}	FePO ₄	0.38	ScPO ₄ , Br, LiBr, LiFeBr ₄	-58.19
D	LiFePO ₄	0.26	ScPO ₄ , LiFeBr4, ScBr ₃ , LiBr	-26.45
Br _{Sc}	FePO ₄	0.44	LiBr, Br, Li ₃ Sc ₂ (PO ₄) ₃ , LiFeBr ₄	-54.07

Table S9. Phase equilibria and minimum decomposition energies (ΔE_D : meV/atom) of ideal and defective Li₃ScBr₆ at the interface with LiFePO₄ cathode material. V_X: X vacancy; X_{int}: X interstitial; X_Y: X occupying the Y lattice site (X, Y = Li, Sc or Br).

Figure S1. Mean square displacement (MSD) of Li^+ ions in defective Li_3ScBr_6 . V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br).

Figure S2. Arrhenius plot of the diffusion coefficient of defective Li_3ScBr_6 . V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br).

Figure S3. Diffusion path of Li^+ ions in defective Li_3ScBr_6 . The yellow surface corresponds to the ionic conduction path, and the regions enclosed with blue surfaces correspond to the stable lithium-ion positions. V_X : X vacancy; X_{int} : X interstitial; X_Y : X occupying the Y lattice site (X, Y = Li, Sc or Br).

