Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Supporting note 1: XRPD pattern and SEM of the A(Lu,Gd)28 glass synthesized through containerless solidification process

Figure S1. XRPD pattern and SEM of the A(Lu,Gd)28 glass synthesized through containerless solidification process (the thickness of (Gd,Lu)AlO₃ is \sim 10 μ m).

Supporting note 2: DSC curve of the A(Lu,Gd)28 glasses (glass beads) synthesized through containerless solidification process

Figure S2. DSC curve of the A(Lu,Gd)28 glasses (glass beads) synthesized through containerless solidification process.

Supporting note 3: SEM backscattering images of transparent ceramics crystallized from A(Lu,Gd)28 bulk glasses

(a)

Figure S3. SEM backscattering images of transparent ceramics crystallized from A(Lu,Gd)28 bulk glasses at (a) 1100 °C and (b) 1300 °C.

Supporting note 4: HR-XRPD pattern of transparent ceramics crystallized from A(Lu,Gd)28 glass-based precursors with 20% Gd³⁺ at 1000 °C and 1100 °C

Figure S4. HR-XRPD pattern of transparent ceramics crystallized from A(Lu,Gd)28 glass-based precursors with 20% Gd³⁺ at 1000 °C and 1100 °C for 2 h.

Supporting note 5: Absorption spectrum of Ce:LuGAG-Al₂O₃ transparent nanoceramics with different Ce³⁺ contents

Figure S5. Absorption spectrum of Ce:LuGAG-Al₂O₃ transparent nanoceramics with different Ce³⁺ contents.

Supporting note 6: Variable temperature PL intensity and quantum efficiency of 0.3%Ce:LuGAG-Al₂O₃ transparent nanoceramics

Figure S6. Variable temperature PL intensity and quantum efficiency of 0.3%Ce:LuGAG-Al₂O₃ transparent nanoceramics.