Supporting Information

# Effective encapsulation method for highly stable perovskite solar cells by introducing UV absorber with biomimetic textures and heat sinker with reduced graphene oxide composite layer

Fuqiang Li<sup>a</sup>, Chaoqun Ma<sup>b</sup>, Xiaofeng Huang<sup>c</sup>, Yoomi Ahn<sup>a</sup>, Danbi Kim<sup>a</sup>, Eunhye Yang

<sup>a</sup>, Junpeng Xue <sup>a</sup>, Bo Ram Lee <sup>a</sup>, Junghwan Kim <sup>d</sup>, Yongchao Ma <sup>e</sup> and Sung Heum Park \*<sup>a</sup>

\* Corresponding authors.

*E-mail addresses:* <u>spark@pknu.ac.kr</u> (S.H.Park)

#### 1. Materials and methods

*Materials:* All chemicals were purchased from Sigma-Aldrich (Australia), Alfa Aesar (Australia), and Great Cell Solar (Australia) and used without further purification. Fluorine-doped tin oxide on glass (FTO glass, 7  $\Omega$  sq<sup>-1</sup>) was purchased from Great Cell Solar. Norland Optical Adhesive (NOA, NOA-63) was purchased from KÖMMERLIN (Germany). The rGO nanosheet was synthesized by a modified Hummers' method, as previously reported.<sup>1</sup> To develop the rGO/NOA-63 composite layer, rGO was added into NOA-63 solution (NOA-63: rGO weight ratio 99: 1) and dispersed by sonication for 30 min. The reaction mixture was stirred at 25 °C for 2 h.

*Materials Synthesis:* Formamidinium lead triiodide (FAPbI<sub>3</sub>) powder was synthesized by retrograde method.<sup>2</sup> In detail, PbI<sub>2</sub> and FAI (1:1 molar ratio) were dissolved in 2ME (0.8 M) first and then filtered using a polyvinylidene fluoride filter with 0.45  $\mu$ m pore size. The filtered solution was placed in a flask incubated in an oil bath at 120 °C for 1 h under continuous stirring. The resulting black powder was filtered using a glass filter and dried at 60 °C for 72 h.

Solar cell fabrication: FTO glass was cleaned with Hellmanex solution (Sigma-Aldrich, Australia), acetone, isopropanol and UV-ozone.

A ~20 nm thick dense blocking layer of  $TiO_2$  was deposited by spray pyrolysis of a solution of titanium diisopropoxide bis(acetylacetonate) in isopropanol (mass fraction = 8.4%) at 450 °C.

For the fabrication of the mesoporous TiO<sub>2</sub> layer (m-TiO<sub>2</sub>), a suspension containing 150

mg/mL Dyesol 30 NR-D TiO<sub>2</sub> paste (GreatCell Solar, Australia) dispersed in ethanol was spin-coated at 4000 rpm (acceleration of 2000 rpm/s) for 15 s on top of the c-TiO<sub>2</sub> layer. The substrates were then annealed at 100 °C for 10 min followed by sintering at 500 °C for 30 min.

The perovskite precursor solution was prepared by dissolving 1550 mg FAPbI<sub>3</sub> and 61 mg MACl with 1 mL DMF/DMSO (4:1). The perovskite solution was filtered with a PVDF filter (0.2  $\mu$ m) and then 70  $\mu$ L of the filtered perovskite solution was spread onto different ETLs at 8000 rpm for 50 s. During the spin-coating, 1 mL diethyl ether was dropped on the perovskite film at 10 seconds. The resulting film was annealed at 150 °C for 15 mins and 100 °C for 30 mins on a hotplate. After the substrates cooling down, octylammonium iodide/IPA solution (15 mM) was spin-coated on the perovskite layer at 3000 rpm for 30 s.

For the hole transport layer, the Spiro-OMeTAD solution was spin-coated on the perovskite layer at 4000 rpm for 30 s. Spiro-OMeTAD (90 mg/mL in CB) was doped with 39  $\mu$ L 4-tert-butylpyridine (tBP), 23  $\mu$ L Li-bis(trifluoromethanesulfonyl)imide (Li-TFSI) (520 mg/mL in acetonitrile) and 5  $\mu$ L FK209 (180 mg/mL in acetonitrile).

The Au electrode was deposited onto the Spiro-OMeTAD layer using a thermal evaporation system. 100 nm thick Au was deposited at 2 Å/s under a pressure of 10<sup>-6</sup> Torr. *Replication of the plants' epidermal surface onto a UV absorption layer*: First, the fresh petal was fixed in a polydimethylsiloxane (PDMS) mold. The PDMS was hardened at 60 °C on a hot plate for 4 h and then separated from the petal, which left a flexible petal

PDMS stamp. Plant remnants on the PDMS were removed in an ultrasonic bath with isopropanol.

In order to replicate the structures into UV-absorbing layer, the following steps were carried out: a drop (around 50  $\mu$ L) of UV-curing adhesive UV-9/NOA-63 was placed on the glass substrate and the PDMS mold was carefully pressed into the drop, ensuring that any air bubbles were directed to the sample edges. After 1 min of UV exposure (at 1.5 mW cm<sup>-2</sup> UV radiation power), the PDMS stamp was separated from the cured NOA-63 to be reused for further replicas (**Figure S2**).

*PeSC packaging:* To ensure good hermetic packaging by blanket encapsulation, clean and residue free edges around the active PeSC area were prepared. The UV-curable glue (rGO/NOA-63) was deposited on the active area and a 1–2 mm thick cover glass was laid on top. The glue was cured by gently pressing over the cover glass and applying about 30 s of UV irradiation.

*Characterization of the UV absorption layer:* Differential scanning calorimetry (DSC) was employed to evaluate the glass transition temperature ( $T_g$ ) of the NOA-63 material, by means of a Mettler-Toledo DSC/823e instrument at a scan rate of 20 °C min<sup>-1</sup> under N<sub>2</sub> flux. Values of  $T_g$  were obtained from the second heating ramp. The thermal stability of the UV-coating was evaluated by means of thermo-gravimetric analysis (TGA) on fully crosslinked solid state samples with a Q500 TGA system (TA Instruments) operated from ambient temperature to 800 °C at a scan rate of 10 °C min<sup>-1</sup> both in air and under flowing N<sub>2</sub>. The surface morphologies of the patterned NOA films were inspected using a fieldemission scanning electron microscope (FESEM, JEM-2100 F, JEOL LTD). The water contact angle was measured using dynamic contact angle equipment (DCA, Phoenix 300, SEO).

*PeSC characterization:* The solar cells were measured using a solar simulator (Newport-Oriel 94083A) together with a Keithley source meter 2400. Solar cells were covered with a black metal mask limiting the active area to  $0.08 \text{ cm}^2$  and reducing the influence of the scattered light. The light intensity was calibrated to  $100 \text{ mW/cm}^2$  using a Si-reference cell certified by NREL for the measurements. The conventional *J-V* curves were measured under both forward and reverse scans. The solar cell IPCE measurement system (Solar Cell Scan 100) is used to analyze the incident photon-electron conversion efficiency (IPCE).



Figure S1. SEM image of synthesized reduce graphene oxide (rGO).



Figure S2. Schematic of the replication process.



**Figure S3.** (a) Photograph of the original rose petals. (b) Photograph of the UV-absorbing layer with the replicated rose surface texture. (c, d) The SEM images of the replicated rose surface texture at different magnifications.



Figure S4. Structure of PeSC encapsulated with rGO/NOA-63 encapsulation film.

### 2. Optical properties of the UV-absorbing layer

To investigate the effect of the concentration of UV-9 hosted in the NOA-63 matrix on the optical properties of the UV-absorbing layer, absorption spectra of the UV-absorbing layer at increasing UV-9 concentrations were collected on 5  $\mu$ m thick UV-absorbing layer, as shown in **Figure S5**. As expected, a progressive increase in UV-9 concentration leads to a correspondingly increased absorption intensity (absorbance).



Figure S5. UV-vis absorption spectra of the UV-absorbing layer at increasing UV-9 concentration.

### 3. Thermal properties of the UV-absorbing layer



Figure S6. DSC trace of the UV-absorbing layer.

DSC thermogram of the UV-absorbing layer. As segmented block polyurethane, UVabsorbing layer is expected to possess two different glass transition temperatures ( $T_g$ ) values. However, the curve exhibits only one  $T_g$  of –16 °C. This may be due to the fact that the NOA-63 and UV-9 are well-dispersed and blended within the films; thus, oligomer consists of one phase. The DSC thermograms of the copolymer/absorbent blends showed only one  $T_g$ , which revealed the homogeneous system of absorbent/copolymer and the miscibility of the absorbent with the copolymer.



Figure S7. TGA thermograms of the UV-absorbing layer carried out (a) in air and (b) in nitrogen atmosphere.

## 4. Surface wettability behavior of the UV-RT



**Figure S8.** Images of water drops on surfaces of (a) UV-absorbing layer and (b) surface rose texture UV-absorbing layer.

**Figure S8** shows surface images of liquid drops; rose texture on UV-absorbing layer increase the contact angle from 74.0° to 98.5°. The rose texture increases the surface roughness, thus increasing the contact angle. This means that the surface of the surface rose texture UV-absorbing layer is more hydrophobic. Micropatterning thus enables reduced water condensation and dust accumulation. Therefore, the UV-RT may facilitate self-cleaning ability.

5. Optical properties of the UV-RT



Figure S9. The reflectance spectra of NOA-63 and surface rose texture NOA-63.

The flat NOA-63 film shows the average reflectance of 22.98% in the visible wavelength range between 400 nm and 700 nm. However, the average reflectance of the rose texture NOA-63 film is 2.16%. This is attributed to the surface micro-/nano hierarchical structure effect, which decreases light reflection. In addition, the increased transmission of the rose texture NOA-63 film is attributed to the light scattering on the patterned surface.

6. The temperature of PeSCs with the encapsulation layer



**Figure S10.** (a) The NOA-63 layer-coated glass plate (NOA-63/glass) and (b) the rGO/NOA-63 layer-coated glass plate (rGO/NOA-63/glass) were placed on the hot plate at 95 °C and heated from the bottom of the glass plate.



**Figure S11.** Infrared thermal camera images of (a) the NOA-63 coated PeSC and (b) the rGO/NOA-63 coated PeSC. (Hot plate at 95 °C)

7. UV stability of organic solar cells



Figure S12. UV stability of OSCs under 60 mW/cm<sup>2</sup> UV light (wavelength of 365 nm) for 8 h in nitrogen condition.

**Table S1.** Photovoltaic parameters of PeSCs coated with the UV-AR loaded with differentamounts (0.5 to 2 wt. %) of UV-9.

Average values for uncoated devices are also show for comparison purposes. Each experimental condition was reproduced 5 times on different devices; solar cells were tested under 1 Sun, AM1.5G, at a scan rate of 5 mV s<sup>-1</sup> and with a mask are of 0.08 cm<sup>2</sup>.

| UV-9    | Jsc                   | Voc       | FF         | PCE        |
|---------|-----------------------|-----------|------------|------------|
| (wt%)   | (mA/cm <sup>2</sup> ) | (V)       | (%)        | (%)        |
| Control | 24.35±0.37            | 1.08±0.02 | 80.14±1.41 | 21.08±0.63 |
| 0.5     | 25.50±0.43            | 1.08±0.02 | 79.25±1.53 | 21.83±0.80 |
| 1.0     | 25.55±0.28            | 1.09±0.01 | 79.92±1.64 | 22.26±0.45 |
| 1.5     | 24.87±0.51            | 1.07±0.04 | 79.35±1.27 | 21.12±1.08 |
| 2.0     | 24.26±0.59            | 1.09±0.03 | 79.25±1.78 | 20.97±1.31 |

## References

- 1.
- A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K.-Y. A. Lin and F. Ghanbari, *Chemical Engineering Journal*, 2023, 453, 139556.
  M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel and D. S. Kim, *Science*, 2022, 375, 302-306. 2.